Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Lindelöf Hypothesis for the Riemann Zeta function and Piltz divisor problem (2406.00331v2)

Published 1 Jun 2024 in math.NT

Abstract: In order to well understand the behaviour of the Riemann zeta function inside the critical strip, we show; among other things, the Fourier expansion of the $\zetak(s)$ ($k \in \mathbb{N}$) in the half-plane $\Re s > 1/2$ and we deduce a necessary and sufficient condition for the truth of the Lindel\"{o}f Hypothesis. Moreover, if $\Delta_k$denotes the error term in the Piltz divisor problem then for almost all $x\geq 1$ and any given $k \in \mathbb{N}$ we have $$\Delta_k(x) = \lim_{\rho \to 1-}\sum_{n=0}{+\infty}(-1)n\ell_{n,k}L_n\left(\log(x)\right)\rhon $$ where $(\ell_{n,k})_{n}$ and $L_n$ denote, respectively, the Fourier coefficients of $\zetak(s)$ and Laguerre polynomials.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com