Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning from metastable grain boundaries (2406.00204v1)

Published 31 May 2024 in cond-mat.mtrl-sci

Abstract: Grain boundaries (GBs) govern critical properties of polycrystals. Although significant advancements have been made in characterizing minimum energy GBs, real GBs are seldom found in such states, making it challenging to establish structure-property relationships. This diversity of atomic arrangements in metastable states motivates using data-driven methods to establish these relationships. In this study, we utilize a vast atomistic database (~5000) of minimum energy and metastable states of symmetric tilt copper GBs, combined with physically-motivated local atomic environment (LAE) descriptors (Strain Functional Descriptors, SFDs) to predict GB properties. Our regression models exhibit robust predictive capabilities using only 19 descriptors, generalizing to atomic environments in nanocrystals. A significant highlight of our work is integration of an unsupervised method with SFDs to elucidate LAEs at GBs and their role in determining properties. Our research underscores the role of a physics-based representation of LAEs and efficacy of data-driven methods in establishing GB structure-property relationships.

Summary

We haven't generated a summary for this paper yet.