Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ImplicitSLIM and How it Improves Embedding-based Collaborative Filtering (2406.00198v1)

Published 31 May 2024 in cs.IR and cs.LG

Abstract: We present ImplicitSLIM, a novel unsupervised learning approach for sparse high-dimensional data, with applications to collaborative filtering. Sparse linear methods (SLIM) and their variations show outstanding performance, but they are memory-intensive and hard to scale. ImplicitSLIM improves embedding-based models by extracting embeddings from SLIM-like models in a computationally cheap and memory-efficient way, without explicit learning of heavy SLIM-like models. We show that ImplicitSLIM improves performance and speeds up convergence for both state of the art and classical collaborative filtering methods. The source code for ImplicitSLIM, related models, and applications is available at https://github.com/ilya-shenbin/ImplicitSLIM.

Summary

We haven't generated a summary for this paper yet.