Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Matrix Rationalization via Partial Orders (2405.20976v1)

Published 31 May 2024 in cs.DM and cs.GT

Abstract: A preference matrix $M$ has an entry for each pair of candidates in an election whose value $p_{ij}$ represents the proportion of voters that prefer candidate $i$ over candidate $j$. The matrix is rationalizable if it is consistent with a set of voters whose preferences are total orders. A celebrated open problem asks for a concise characterization of rationalizable preference matrices. In this paper, we generalize this matrix rationalizability question and study when a preference matrix is consistent with a set of voters whose preferences are partial orders of width $\alpha$. The width (the maximum cardinality of an antichain) of the partial order is a natural measure of the rationality of a voter; indeed, a partial order of width $1$ is a total order. Our primary focus concerns the rationality number, the minimum width required to rationalize a preference matrix. We present two main results. The first concerns the class of half-integral preference matrices, where we show the key parameter required in evaluating the rationality number is the chromatic number of the undirected unanimity graph associated with the preference matrix $M$. The second concerns the class of integral preference matrices, where we show the key parameter now is the dichromatic number of the directed voting graph associated with $M$.

Summary

We haven't generated a summary for this paper yet.