Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Cahn-Hilliard equation with kinetic rate dependent dynamic boundary condition and non-smooth potential: separation property and long-time behavior (2405.20807v1)

Published 31 May 2024 in math.AP

Abstract: We consider a class of Cahn-Hilliard equation that characterizes phase separation phenomena of binary mixtures in a bounded domain $\Omega \subset \mathbb{R}d$ $(d\in {2,3})$ with non-permeable boundary. The equations in the bulk are subject to kinetic rate dependent dynamic boundary conditions with possible boundary diffusion acting on the boundary chemical potential. For the initial boundary value problem with singular potentials, we prove that any global weak solution exhibits a propagation of regularity in time. In the two dimensional case, we establish the instantaneous strict separation property by a suitable De Giorgi's iteration scheme, which yields that the weak solution stays uniformly away from the pure phases $\pm 1$ from any positive time on. In particular, when the bulk and boundary chemical potentials are in equilibrium, we obtain the instantaneous separation property with or without possible boundary diffusion acting on the boundary chemical potential. Next, in the three dimensional case, we show the eventual strict separation property that holds after a sufficiently large time. These separation properties are obtained in an unified way with respect to the structural parameters. Moreover, they allow us to achieve higher-order regularity of the global weak solution and prove the convergence to a single equilibrium as $t \rightarrow \infty$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.