Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In-Context Decision Transformer: Reinforcement Learning via Hierarchical Chain-of-Thought (2405.20692v1)

Published 31 May 2024 in cs.LG and cs.AI

Abstract: In-context learning is a promising approach for offline reinforcement learning (RL) to handle online tasks, which can be achieved by providing task prompts. Recent works demonstrated that in-context RL could emerge with self-improvement in a trial-and-error manner when treating RL tasks as an across-episodic sequential prediction problem. Despite the self-improvement not requiring gradient updates, current works still suffer from high computational costs when the across-episodic sequence increases with task horizons. To this end, we propose an In-context Decision Transformer (IDT) to achieve self-improvement in a high-level trial-and-error manner. Specifically, IDT is inspired by the efficient hierarchical structure of human decision-making and thus reconstructs the sequence to consist of high-level decisions instead of low-level actions that interact with environments. As one high-level decision can guide multi-step low-level actions, IDT naturally avoids excessively long sequences and solves online tasks more efficiently. Experimental results show that IDT achieves state-of-the-art in long-horizon tasks over current in-context RL methods. In particular, the online evaluation time of our IDT is \textbf{36$\times$} times faster than baselines in the D4RL benchmark and \textbf{27$\times$} times faster in the Grid World benchmark.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Sili Huang (10 papers)
  2. Jifeng Hu (19 papers)
  3. Hechang Chen (26 papers)
  4. Lichao Sun (186 papers)
  5. Bo Yang (426 papers)
Citations (2)
X Twitter Logo Streamline Icon: https://streamlinehq.com