Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-label Class Incremental Emotion Decoding with Augmented Emotional Semantics Learning (2405.20600v1)

Published 31 May 2024 in cs.AI

Abstract: Emotion decoding plays an important role in affective human-computer interaction. However, previous studies ignored the dynamic real-world scenario, where human experience a blend of multiple emotions which are incrementally integrated into the model, leading to the multi-label class incremental learning (MLCIL) problem. Existing methods have difficulty in solving MLCIL issue due to notorious catastrophic forgetting caused by partial label problem and inadequate label semantics mining. In this paper, we propose an augmented emotional semantics learning framework for multi-label class incremental emotion decoding. Specifically, we design an augmented emotional relation graph module with label disambiguation to handle the past-missing partial label problem. Then, we leverage domain knowledge from affective dimension space to alleviate future-missing partial label problem by knowledge distillation. Besides, an emotional semantics learning module is constructed with a graph autoencoder to obtain emotion embeddings in order to guide the semantic-specific feature decoupling for better multi-label learning. Extensive experiments on three datasets show the superiority of our method for improving emotion decoding performance and mitigating forgetting on MLCIL problem.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets