Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-efficient fine-tuning of foundational models for first-principles quality sublimation enthalpies (2405.20217v1)

Published 30 May 2024 in cond-mat.mtrl-sci and physics.chem-ph

Abstract: Calculating sublimation enthalpies of molecular crystal polymorphs is relevant to a wide range of technological applications. However, predicting these quantities at first-principles accuracy -- even with the aid of machine learning potentials -- is a challenge that requires sub-kJ/mol accuracy in the potential energy surface and finite-temperature sampling. We present an accurate and data-efficient protocol based on fine-tuning of the foundational MACE-MP-0 model and showcase its capabilities on sublimation enthalpies and physical properties of ice polymorphs. Our approach requires only a few tens of training structures to achieve sub-kJ/mol accuracy in the sublimation enthalpies and sub 1 % error in densities for polymorphs at finite temperature and pressure. Exploiting this data efficiency, we explore simulations of hexagonal ice at the random phase approximation level of theory at experimental temperatures and pressures, calculating its physical properties, like pair correlation function and density, with good agreement with experiments. Our approach provides a way forward for predicting the stability of molecular crystals at finite thermodynamic conditions with the accuracy of correlated electronic structure theory.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com