Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Reinforcement Learning for Intrusion Detection in IoT: A Survey (2405.20038v1)

Published 30 May 2024 in cs.CR

Abstract: The rise of new complex attacks scenarios in Internet of things (IoT) environments necessitate more advanced and intelligent cyber defense techniques such as various Intrusion Detection Systems (IDSs) which are responsible for detecting and mitigating malicious activities in IoT networks without human intervention. To address this issue, deep reinforcement learning (DRL) has been proposed in recent years, to automatically tackle intrusions/attacks. In this paper, a comprehensive survey of DRL-based IDS on IoT is presented. Furthermore, in this survey, the state-of-the-art DRL-based IDS methods have been classified into five categories including wireless sensor network (WSN), deep Q-network (DQN), healthcare, hybrid, and other techniques. In addition, the most crucial performance metrics, namely accuracy, recall, precision, false negative rate (FNR), false positive rate (FPR), and F-measure, are detailed, in order to evaluate the performance of each proposed method. The paper provides a summary of datasets utilized in the studies as well.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Afrah Gueriani (3 papers)
  2. Hamza Kheddar (24 papers)
  3. Ahmed Cherif Mazari (4 papers)
Citations (8)
X Twitter Logo Streamline Icon: https://streamlinehq.com