Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Sufficient Dimension Reduction via Hellinger Correlation (2405.19704v1)

Published 30 May 2024 in stat.ML, cs.LG, and stat.ME

Abstract: In this work, we develop a new theory and method for sufficient dimension reduction (SDR) in single-index models, where SDR is a sub-field of supervised dimension reduction based on conditional independence. Our work is primarily motivated by the recent introduction of the Hellinger correlation as a dependency measure. Utilizing this measure, we develop a method capable of effectively detecting the dimension reduction subspace, complete with theoretical justification. Through extensive numerical experiments, we demonstrate that our proposed method significantly enhances and outperforms existing SDR methods. This improvement is largely attributed to our proposed method's deeper understanding of data dependencies and the refinement of existing SDR techniques.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com