Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modally Reduced Representation Learning of Multi-Lead ECG Signals through Simultaneous Alignment and Reconstruction (2405.19359v1)

Published 24 May 2024 in eess.SP and cs.LG

Abstract: Electrocardiogram (ECG) signals, profiling the electrical activities of the heart, are used for a plethora of diagnostic applications. However, ECG systems require multiple leads or channels of signals to capture the complete view of the cardiac system, which limits their application in smartwatches and wearables. In this work, we propose a modally reduced representation learning method for ECG signals that is capable of generating channel-agnostic, unified representations for ECG signals. Through joint optimization of reconstruction and alignment, we ensure that the embeddings of the different channels contain an amalgamation of the overall information across channels while also retaining their specific information. On an independent test dataset, we generated highly correlated channel embeddings from different ECG channels, leading to a moderate approximation of the 12-lead signals from a single-channel embedding. Our generated embeddings can work as competent features for ECG signals for downstream tasks.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com