Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Personalized Interiors at Scale: Leveraging AI for Efficient and Customizable Design Solutions (2405.19188v1)

Published 29 May 2024 in cs.HC

Abstract: In this paper, we introduce an innovative application of artificial intelligence in the realm of interior design through the integration of Stable Diffusion and Dreambooth models. This paper explores the potential of these advanced generative models to streamline and democratize the process of room interior generation, offering a significant departure from conventional, labor-intensive techniques. Our approach leverages the capabilities of Stable Diffusion for generating high-quality images and Dreambooth for rapid customization with minimal training data, addressing the need for efficiency and personalization in the design industry. We detail a comprehensive methodology that combines these models, providing a robust framework for the creation of tailored room interiors that reflect individual tastes and functional requirements. We presents an extensive evaluation of our method, supported by experimental results that demonstrate its effectiveness and a series of case studies that illustrate its practical application in interior design projects. Our study contributes to the ongoing discourse on the role of AI in creative fields, highlighting the benefits of leveraging generative models to enhance creativity and reshape the future of interior design.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. R. Schroeder, “Towards a theory of digital media,” Information, Communication & Society 21(3), 323–339 (2018).
  2. P. N. Howard and M. M. Hussain, “The role of digital media,” J. Democracy 22, 35 (2011).
  3. E. G. Coleman, “Ethnographic approaches to digital media,” Annual review of anthropology 39, 487–505 (2010).
  4. N. Memon and P. W. Wong, “Protecting digital media content,” Communications of the ACM 41(7), 35–43 (1998).
  5. M. R. Lee and T. T. Chen, “Digital creativity: Research themes and framework,” Computers in human behavior 42, 12–19 (2015).
  6. R. S. Ulrich, “Effects of interior design on wellness: theory and recent scientific research.,” in Journal of Health Care Interior Design: Proceedings from the… Symposium on Health Care Interior Design. Symposium on Health Care Interior Design, 3, 97–109 (1991).
  7. L. K. Havenhand, “A view from the margin: Interior design,” Design Issues 20(4), 32–42 (2004).
  8. M. Kang and D. A. Guerin, “The characteristics of interior designers who practice environmentally sustainable interior design,” Environment and Behavior 41(2), 170–184 (2009).
  9. D. Garlan, R. Allen, and J. Ockerbloom, “Exploiting style in architectural design environments,” ACM SIGSOFT software engineering notes 19(5), 175–188 (1994).
  10. V. Machairas, A. Tsangrassoulis, and K. Axarli, “Algorithms for optimization of building design: A review,” Renewable and sustainable energy reviews 31, 101–112 (2014).
  11. W. Wu, X.-M. Fu, R. Tang, et al., “Data-driven interior plan generation for residential buildings,” ACM Transactions on Graphics (TOG) 38(6), 1–12 (2019).
  12. T. Tutenel, R. Bidarra, R. M. Smelik, et al., “Rule-based layout solving and its application to procedural interior generation,” in CASA workshop on 3D advanced media in gaming and simulation, (2009).
  13. S. Amershi, D. Weld, M. Vorvoreanu, et al., “Guidelines for human-ai interaction,” in Proceedings of the 2019 chi conference on human factors in computing systems, 1–13 (2019).
  14. J. Auernhammer, “Human-centered ai: The role of human-centered design research in the development of ai,” (2020).
  15. R. Verganti, L. Vendraminelli, and M. Iansiti, “Innovation and design in the age of artificial intelligence,” Journal of product innovation management 37(3), 212–227 (2020).
  16. R. Rombach, A. Blattmann, D. Lorenz, et al., “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 10684–10695 (2022).
  17. N. Ruiz, Y. Li, V. Jampani, et al., “Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 22500–22510 (2023).
  18. T. Brooks, A. Holynski, and A. A. Efros, “Instructpix2pix: Learning to follow image editing instructions,” in CVPR, (2023).
  19. A. Hertz, R. Mokady, J. Tenenbaum, et al., “Prompt-to-prompt image editing with cross attention control,” in ICLR, (2023).
  20. P. Li, Q. Huang, Y. Ding, et al., “Layerdiffusion: Layered controlled image editing with diffusion models,” in SIGGRAPH Asia 2023 Technical Communications, 1–4 (2023).
  21. C. Meng, Y. Song, J. Song, et al., “Sdedit: Image synthesis and editing with stochastic differential equations,” in ICLR, (2022).
  22. N. Tumanyan, M. Geyer, S. Bagon, et al., “Plug-and-play diffusion features for text-driven image-to-image translation,” in CVPR, (2023).
  23. B. Kawar, S. Zada, O. Lang, et al., “Imagic: Text-based real image editing with diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 6007–6017 (2023).
  24. P. Li, B. Li, and Z. Li, “Sketch-to-Architecture: Generative AI-aided Architectural Design,” in Pacific Graphics Short Papers and Posters 2023, (2023).
  25. P. Li, C. Tang, Q. Huang, et al., “Art3d: 3d gaussian splatting for text-guided artistic scenes generation,” arXiv:2405.10508 (2024).
  26. B. Poole, A. Jain, J. T. Barron, et al., “DreamFusion: Text-to-3d using 2d diffusion,” in Int. Conf. Learn. Represent., (2023).
  27. C.-H. Lin, J. Gao, L. Tang, et al., “Magic3d: High-resolution text-to-3d content creation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 300–309 (2023).
  28. P. Li and B. Li, “Generating daylight-driven architectural design via diffusion models,” arXiv preprint arXiv:2404.13353 (2024).
  29. E. R. Chan, K. Nagano, M. A. Chan, et al., “Generative novel view synthesis with 3d-aware diffusion models,” arXiv preprint arXiv:2304.02602 (2023).
  30. J. Tang, T. Wang, B. Zhang, et al., “Make-it-3d: High-fidelity 3d creation from a single image with diffusion prior,” arXiv preprint arXiv:2303.14184 (2023).
  31. I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial networks,” Communications of the ACM 63(11), 139–144 (2020).
  32. L. Metz, B. Poole, D. Pfau, et al., “Unrolled generative adversarial networks,” arXiv preprint arXiv:1611.02163 (2016).
  33. I. Goodfellow, J. Pouget-Abadie, M. Mirza, et al., “Generative adversarial nets,” Advances in neural information processing systems 27 (2014).
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kaiwen Zhou (42 papers)
  2. Tianyu Wang (152 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets