Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Delay-Doppler Domain Pulse Design for OTFS-NOMA (2405.19182v1)

Published 29 May 2024 in eess.SP, cs.IT, and math.IT

Abstract: We address the challenge of developing an orthogonal time-frequency space (OTFS)-based non-orthogonal multiple access (NOMA) system where each user is modulated using orthogonal pulses in the delay Doppler domain. Building upon the concept of the sufficient (bi)orthogonality train-pulse [1], we extend this idea by introducing Hermite functions, known for their orthogonality properties. Simulation results demonstrate that our proposed Hermite functions outperform the traditional OTFS-NOMA schemes, including power-domain (PDM) NOMA and code-domain (CDM) NOMA, in terms of bit error rate (BER) over a high-mobility channel. The algorithm's complexity is minimal, primarily involving the demodulation of OTFS. The spectrum efficiency of Hermite-based OTFS-NOMA is K times that of OTFS-CDM-NOMA scheme, where K is the spreading length of the NOMA waveform.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. H. Lin and J. Yuan, “Orthogonal Delay-Doppler Division Multiplexing Modulation,” IEEE Trans. on Wireless Commun., vol. 21, no. 12, pp. 11 024–11 037, 2022.
  2. ITU, “IMT towards 2030 and beyond.” [Online]. Available: https://www.itu.int/en/ITU-R/study-groups/rsg5/rwp5d/imt-2030/Pages/default.aspx
  3. T.-K. Le, U. Salim, and F. Kaltenberger, “An Overview of Physical Layer Design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and 17,” IEEE Access, vol. 9, pp. 433–444, 2021.
  4. R. Hadani, S. Rakib, M. Tsatsanis, A. Monk, A. J. Goldsmith, A. F. Molisch, and R. Calderbank, “Orthogonal Time Frequency Space Modulation,” in IEEE Wireless Commun. and Net. Conf. (WCNC), 2017, pp. 1–6.
  5. J. Shi, Z. Li, J. Hu, Z. Tie, S. Li, W. Liang, and Z. Ding, “OTFS Enabled LEO Satellite Communications: A Promising Solution to Severe Doppler Effects,” IEEE Network (Early Access), pp. 1–7, 2023.
  6. M. Kulhandjian, H. Kulhandjian, C. D’amours, and L. Hanzo, “Low-Density Spreading Codes for NOMA Systems and a Gaussian Separability-Based Design,” IEEE Access, vol. 9, pp. 33 963–33 993, 2021.
  7. M. Kulhandjian, G. K. Kurt, H. Kulhandjian, H. Yanikomeroglu, and C. D’Amours, “NOMA Computation Over Multi-Access Channels for Multimodal Sensing,” IEEE Wireless Commun. Lett., vol. 10, no. 11, pp. 2577–2581, 2021.
  8. L. Dai, B. Wang, Y. Yuan, S. Han, C. I, and Z. Wang, “Non-orthogonal Multiple Access for 5G: Solutions, Challenges, Opportunities, and Future Research Trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, Sep. 2015.
  9. G. Millar, M. Kulhandjian, A. Alaca, S. Alaca, C. D’Amours, and H. Yanikomeroglu, “Low-Density Spreading Design Based on an Algebraic Scheme for NOMA Systems,” IEEE Wireless Commun. Lett., vol. 11, no. 4, pp. 698–702, 2022.
  10. R. Razavi, M. AL-Imari, M. A. Imran, R. Hoshyar, and D. Chen, “On Receiver Design for Uplink Low Density Signature OFDM (LDS-OFDM),” IEEE Trans. Commun., vol. 60, no. 11, pp. 3499–3508, Nov. 2012.
  11. H. Nikopour and H. Baligh, “Sparse Code Multiple Access,” in Proc. IEEE Pers., Indoor, Mobile Radio Conf. (PIMRC), London, U.K., Sep. 2013, pp. 332–336.
  12. M. Kulhandjian and C. D’Amours, “Design of Permutation-Based Sparse Code Multiple Access System,” in Proc. IEEE Pers., Indoor, Mobile Radio Conf. (PIMRC), Montreal, Canada, Oct. 2017, pp. 1031–1035.
  13. Z. Yuan, G. Yu, W. Li, Y. Yuan, X. Wang, and J. Xu, “Multi-User Shared Access for Internet of Things,” in Proc. IEEE Veh. Technol. Conf. (VTC Spring), Nanjing, China, May 2016, pp. 1–5.
  14. Z. Ding, R. Schober, P. Fan, and H. Vincent Poor, “OTFS-NOMA: An Efficient Approach for Exploiting Heterogenous User Mobility Profiles,” IEEE Trans. on Commun., vol. 67, no. 11, pp. 7950–7965, 2019.
  15. S. McWade, A. Farhang, and M. F. Flanagan, “Low-Complexity Reliability-Based Equalization and Detection for OTFS-NOMA,” IEEE Trans. on Commun., vol. 71, no. 11, pp. 6779–6792, 2023.
  16. K. Deka, A. Thomas, and S. Sharma, “OTFS-SCMA: A Code-Domain NOMA Approach for Orthogonal Time Frequency Space Modulation,” IEEE Trans. on Commun., vol. 69, no. 8, pp. 5043–5058, 2021.
  17. H. Wen, W. Yuan, Z. Liu, and S. Li, “OTFS-SCMA: A Downlink NOMA Scheme for Massive Connectivity in High Mobility Channels,” IEEE Trans. on Wireless Commun., vol. 22, no. 9, pp. 5770–5784, 2023.
  18. Y. Ge, Q. Deng, P. C. Ching, and Z. Ding, “OTFS Signaling for Uplink NOMA of Heterogeneous Mobility Users,” IEEE Trans. on Commun., vol. 69, no. 5, pp. 3147–3161, 2021.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com