Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Online Linear Regression in Dynamic Environments via Discounting (2405.19175v1)

Published 29 May 2024 in cs.LG and stat.ML

Abstract: We develop algorithms for online linear regression which achieve optimal static and dynamic regret guarantees \emph{even in the complete absence of prior knowledge}. We present a novel analysis showing that a discounted variant of the Vovk-Azoury-Warmuth forecaster achieves dynamic regret of the form $R_{T}(\vec{u})\le O\left(d\log(T)\vee \sqrt{dP_{T}{\gamma}(\vec{u})T}\right)$, where $P_{T}{\gamma}(\vec{u})$ is a measure of variability of the comparator sequence, and show that the discount factor achieving this result can be learned on-the-fly. We show that this result is optimal by providing a matching lower bound. We also extend our results to \emph{strongly-adaptive} guarantees which hold over every sub-interval $[a,b]\subseteq[1,T]$ simultaneously.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets