Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Source Coflow Scheduling in Collaborative Edge Computing with Multihop Network (2405.19136v1)

Published 29 May 2024 in cs.NI and cs.DC

Abstract: Collaborative edge computing has become a popular paradigm where edge devices collaborate by sharing resources. Data dissemination is a fundamental problem in CEC to decide what data is transmitted from which device and how. Existing works on data dissemination have not focused on coflow scheduling in CEC, which involves deciding the order of flows within and across coflows at network links. Coflow implies a set of parallel flows with a shared objective. The existing works on coflow scheduling in data centers usually assume a non-blocking switch and do not consider congestion at different links in the multi-hop path in CEC, leading to increased coflow completion time (CCT). Furthermore, existing works do not consider multiple flow sources that cannot be ignored, as data can have duplicate copies at different edge devices. This work formulates the multi-source coflow scheduling problem in CEC, which includes jointly deciding the source and flow ordering for multiple coflows to minimize the sum of CCT. This problem is shown to be NP-hard and challenging as each flow can have multiple dependent conflicts at multiple links. We propose a source and coflow-aware search and adjust (SCASA) heuristic that first provides an initial solution considering the coflow characteristics. SCASA further improves the initial solution using the source search and adjust heuristic by leveraging the knowledge of both coflows and network congestion at links. Evaluation done using simulation experiments shows that SCASA leads to up to 83% reduction in the sum of CCT compared to benchmarks without a joint solution.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (58)
  1. P. Dong, J. Ge, X. Wang, and S. Guo, “Collaborative edge computing for social internet of things: Applications, solutions, and challenges,” IEEE Transactions on Computational Social Systems, 2021.
  2. Y. Sahni, J. Cao, S. Zhang, and L. Yang, “Edge mesh: A new paradigm to enable distributed intelligence in internet of things,” IEEE access, vol. 5, pp. 16 441–16 458, 2017.
  3. A. Aral and T. Ovatman, “A decentralized replica placement algorithm for edge computing,” IEEE transactions on network and service management, vol. 15, no. 2, pp. 516–529, 2018.
  4. K. Liu, K. Xiao, P. Dai, V. Lee, S. Guo, and J. Cao, “Fog computing empowered data dissemination in software defined heterogeneous vanets,” IEEE Transactions on Mobile Computing, 2020.
  5. L. Yang, L. Zhang, Z. He, J. Cao, and W. Wu, “Efficient hybrid data dissemination for edge-assisted automated driving,” IEEE Internet of Things Journal, vol. 7, no. 1, pp. 148–159, 2019.
  6. A. Singh, G. S. Aujla, and R. S. Bali, “Intent-based network for data dissemination in software-defined vehicular edge computing,” IEEE Transactions on Intelligent Transportation Systems, 2020.
  7. Q. Luo, C. Li, T. H. Luan, and W. Shi, “Edgevcd: Intelligent algorithm-inspired content distribution in vehicular edge computing network,” IEEE Internet of Things Journal, vol. 7, no. 6, pp. 5562–5579, 2020.
  8. M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling with varys,” in Proceedings of the 2014 ACM conference on SIGCOMM, 2014, pp. 443–454.
  9. S. Luo, H. Yu, Y. Zhao, S. Wang, S. Yu, and L. Li, “Towards practical and near-optimal coflow scheduling for data center networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 11, pp. 3366–3380, 2016.
  10. S. Ahmadi, S. Khuller, M. Purohit, and S. Yang, “On scheduling coflows,” Algorithmica, vol. 82, no. 12, pp. 3604–3629, 2020.
  11. M. Chowdhury, S. Khuller, M. Purohit, S. Yang, and J. You, “Near optimal coflow scheduling in networks,” in The 31st ACM Symposium on Parallelism in Algorithms and Architectures, 2019, pp. 123–134.
  12. S. Sundar and B. Liang, “Offloading dependent tasks with communication delay and deadline constraint,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications.   IEEE, 2018, pp. 37–45.
  13. Z. Hong, H. Huang, S. Guo, W. Chen, and Z. Zheng, “Qos-aware cooperative computation offloading for robot swarms in cloud robotics,” IEEE Transactions on Vehicular Technology, vol. 68, no. 4, pp. 4027–4041, 2019.
  14. M. Queyranne and M. Sviridenko, “Approximation algorithms for shop scheduling problems with minsum objective,” Journal of Scheduling, vol. 5, no. 4, pp. 287–305, 2002.
  15. J. Yang, H. Zhang, Y. Ling, C. Pan, and W. Sun, “Task allocation for wireless sensor network using modified binary particle swarm optimization,” IEEE Sensors Journal, vol. 14, no. 3, pp. 882–892, 2013.
  16. Y. Sahni, J. Cao, and L. Yang, “Data-aware task allocation for achieving low latency in collaborative edge computing,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 3512–3524, 2018.
  17. Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multi-hop multi-task partial computation offloading in collaborative edge computing,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 5, pp. 1133–1145, 2021.
  18. J. Adams, E. Balas, and D. Zawack, “The shifting bottleneck procedure for job shop scheduling,” Management science, vol. 34, no. 3, pp. 391–401, 1988.
  19. Z. Qiu, C. Stein, and Y. Zhong, “Minimizing the total weighted completion time of coflows in datacenter networks,” in Proceedings of the 27th ACM symposium on Parallelism in Algorithms and Architectures, 2015, pp. 294–303.
  20. L. Chen, W. Cui, B. Li, and B. Li, “Optimizing coflow completion times with utility max-min fairness,” in IEEE INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Communications.   IEEE, 2016, pp. 1–9.
  21. Q. Zhou, K. Wang, P. Li, D. Zeng, S. Guo, B. Ye, and M. Guo, “Fast coflow scheduling via traffic compression and stage pipelining in datacenter networks,” IEEE Transactions on Computers, vol. 68, no. 12, pp. 1755–1771, 2019.
  22. R. Xu, W. Li, K. Li, X. Zhou, and H. Qi, “Scheduling mix-coflows in datacenter networks,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 2002–2015, 2020.
  23. J. Zhang, D. Guo, K. Li, H. Qi, X. Tao, and Y. Jin, “Coflow scheduling in the multi-resource environment,” IEEE Transactions on Network and Service Management, vol. 16, no. 2, pp. 783–796, 2019.
  24. H. Jahanjou, E. Kantor, and R. Rajaraman, “Asymptotically optimal approximation algorithms for coflow scheduling,” in Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures, 2017, pp. 45–54.
  25. M. Shafiee and J. Ghaderi, “An improved bound for minimizing the total weighted completion time of coflows in datacenters,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1674–1687, 2018.
  26. R. Mao and V. Aggarwal, “Npscs: Non-preemptive stochastic coflow scheduling with time-indexed lp relaxation,” IEEE Transactions on Network and Service Management, vol. 18, no. 2, pp. 2377–2387, 2021.
  27. M. Shafiee and J. Ghaderi, “Scheduling coflows with dependency graph,” IEEE/ACM Transactions on Networking, 2021.
  28. B. Tian, C. Tian, B. Wang, B. Li, Z. He, H. Dai, K. Liu, W. Dou, and G. Chen, “Scheduling dependent coflows to minimize the total weighted job completion time in datacenters,” Computer Networks, vol. 158, pp. 193–205, 2019.
  29. B. Tian, C. Tian, H. Dai, and B. Wang, “Scheduling coflows of multi-stage jobs to minimize the total weighted job completion time,” in IEEE INFOCOM 2018-IEEE Conference on Computer Communications.   IEEE, 2018, pp. 864–872.
  30. S. Wang, J. Zhang, T. Huang, T. Pan, J. Liu, and Y. Liu, “Multi-attributes-based coflow scheduling without prior knowledge,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp. 1962–1975, 2018.
  31. X. Xu, W. Li, K. Li, H. Qi, and Y. Jin, “Optimizing the cost-performance tradeoff for coflows across geo-distributed datacenters,” IEEE Access, vol. 6, pp. 24 488–24 497, 2018.
  32. Y. Li, S. H.-C. Jiang, H. Tan, C. Zhang, G. Chen, J. Zhou, and F. C. Lau, “Efficient online coflow routing and scheduling,” in Proceedings of the 17th ACM International Symposium on Mobile Ad Hoc Networking and Computing, 2016, pp. 161–170.
  33. Y. Zeng, B. Ye, B. Tang, S. Guo, and Z. Qu, “Scheduling coflows of multi-stage jobs under network resource constraints,” Computer Networks, vol. 184, p. 107686, 2021.
  34. Y. Chen and J. Wu, “Multi-hop coflow routing and scheduling in data centers,” in 2018 IEEE International Conference on Communications (ICC).   IEEE, 2018, pp. 1–6.
  35. L. Shi, Y. Liu, J. Zhang, and T. Robertazzi, “Coflow scheduling in data centers: routing and bandwidth allocation,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 11, pp. 2661–2675, 2021.
  36. Y.-H. Chiang, H. Lin, and Y. Ji, “Information cofreshness-aware grant assignment and transmission scheduling for internet of things,” IEEE Internet of Things Journal, vol. 8, no. 19, pp. 14 435–14 446, 2021.
  37. H. Wang, X. Yu, H. Xu, J. Fan, C. Qiao, and L. Huang, “Integrating coflow and circuit scheduling for optical networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 6, pp. 1346–1358, 2018.
  38. T. Zhang, F. Ren, J. Bao, R. Shu, and W. Cheng, “Minimizing coflow completion time in optical circuit switched networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 2, pp. 457–469, 2020.
  39. H. Tan, C. Zhang, C. Xu, Y. Li, Z. Han, and X.-Y. Li, “Regularization-based coflow scheduling in optical circuit switches,” IEEE/ACM Transactions on Networking, vol. 29, no. 3, pp. 1280–1293, 2021.
  40. Z. Li and H. Shen, “Co-scheduler: A coflow-aware data-parallel job scheduler in hybrid electrical/optical datacenter networks,” IEEE/ACM Transactions on Networking, 2022.
  41. X. S. Huang and T. E. Ng, “Exploiting inter-flow relationship for coflow placement in datacenters,” in Proceedings of the First Asia-Pacific Workshop on Networking, 2017, pp. 113–119.
  42. H. Tan, S. H.-C. Jiang, Y. Li, X.-Y. Li, C. Zhang, Z. Han, and F. C. M. Lau, “Joint online coflow routing and scheduling in data center networks,” IEEE/ACM Transactions on Networking, vol. 27, no. 5, pp. 1771–1786, 2019.
  43. Y. Zhao, C. Tian, J. Fan, T. Guan, X. Zhang, and C. Qiao, “Joint reducer placement and coflow bandwidth scheduling for computing clusters,” IEEE/ACM Transactions on Networking, vol. 29, no. 1, pp. 438–451, 2020.
  44. W. Li, X. Yuan, K. Li, H. Qi, X. Zhou, and R. Xu, “Endpoint-flexible coflow scheduling across geo-distributed datacenters,” IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 10, pp. 2466–2481, 2020.
  45. C. F. Funai, C. Tapparello, and W. Heinzelman, “Computational offloading for energy constrained devices in multi-hop cooperative networks,” IEEE Transactions on Mobile Computing, 2019.
  46. H. Al-Shatri, S. Müller, and A. Klein, “Distributed algorithm for energy efficient multi-hop computation offloading,” in 2016 IEEE International Conference on Communications (ICC).   IEEE, 2016, pp. 1–6.
  47. Z. Hong, W. Chen, H. Huang, S. Guo, and Z. Zheng, “Multi-hop cooperative computation offloading for industrial iot-edge-cloud computing environments,” IEEE Transactions on Parallel and Distributed Systems, 2019.
  48. A. Munir, T. He, R. Raghavendra, F. Le, and A. X. Liu, “Network scheduling aware task placement in datacenters,” in Proceedings of the 12th International on Conference on emerging Networking EXperiments and Technologies.   ACM, 2016, pp. 221–235.
  49. Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and I. Stoica, “Low latency geo-distributed data analytics,” ACM SIGCOMM Computer Communication Review, vol. 45, no. 4, pp. 421–434, 2015.
  50. L. Rupprecht, W. Culhane, and P. Pietzuch, “Squirreljoin: network-aware distributed join processing with lazy partitioning,” Proceedings of the VLDB Endowment, vol. 10, no. 11, pp. 1250–1261, 2017.
  51. Y. Guo, Z. Wang, H. Zhang, X. Yin, X. Shi, and J. Wu, “Joint optimization of tasks placement and routing to minimize coflow completion time,” Journal of Network and Computer Applications, vol. 135, pp. 47–61, 2019.
  52. Z. Wu, “Joint coflow optimization for data center networks,” IEEE Access, vol. 9, pp. 108 402–108 410, 2021.
  53. Y.-H. Chiang, T. Zhang, and Y. Ji, “Joint cotask-aware offloading and scheduling in mobile edge computing systems,” IEEE Access, vol. 7, pp. 105 008–105 018, 2019.
  54. Y. Sahni, J. Cao, L. Yang, and Y. Ji, “Multihop offloading of multiple dag tasks in collaborative edge computing,” IEEE Internet of Things Journal, vol. 8, no. 6, pp. 4893–4905, 2021.
  55. Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen, “Toward efficient content delivery for automated driving services: An edge computing solution,” IEEE Network, vol. 32, no. 1, pp. 80–86, 2018.
  56. R. A. Dziyauddin, D. Niyato, N. C. Luong, A. A. A. M. Atan, M. A. M. Izhar, M. H. Azmi, and S. M. Daud, “Computation offloading and content caching and delivery in vehicular edge network: A survey,” Computer Networks, vol. 197, p. 108228, 2021.
  57. R. Fantacci and B. Picano, “Performance analysis of a delay constrained data offloading scheme in an integrated cloud-fog-edge computing system,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 12 004–12 014, 2020.
  58. G. Mitsis, E. E. Tsiropoulou, and S. Papavassiliou, “Data offloading in uav-assisted multi-access edge computing systems: A resource-based pricing and user risk-awareness approach,” Sensors, vol. 20, no. 8, p. 2434, 2020.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com