Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complemented subspaces of Banach spaces $C(K\times L)$ (2405.19120v2)

Published 29 May 2024 in math.FA

Abstract: We prove that, for every compact spaces $K_1,K_2$ and compact group $G$, if both $K_1$ and $K_2$ map continuously onto $G$, then the Banach space $C(K_1 \times K_2)$ contains a complemented subspace isometric to the Banach space $C(G)$. Consequently, $C(K_1\times K_2)$ contains a complemented copy of $C([0,1])$ for every non-scattered $K_1,K_2$. Also, answering a question of Alspach and Galego, we get that $C(\beta\omega\times\beta\omega)$ contains a complemented copy of $C([0,1]\kappa)$ for every cardinal number $1\le\kappa\le{\mathfrak c}$ and hence a complemented copy of $C(K)$ for every metric compact space $K$. On the other hand, for the pointwise topology, we show that $C_p(\beta\omega\times\beta\omega)$ contains no complemented copy of $C_p(2\omega)$.

Summary

We haven't generated a summary for this paper yet.