Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dependency equilibria: Boundary cases and their real algebraic geometry (2405.19054v2)

Published 29 May 2024 in math.AG and cs.GT

Abstract: This paper is a significant step forward in understanding dependency equilibria within the framework of real algebraic geometry encompassing both pure and mixed equilibria. In alignment with Spohn's original definition of dependency equilibria, we propose two alternative definitions, allowing for an algebro-geometric comprehensive study of all dependency equilibria. We give a sufficient condition for the existence of a pure dependency equilibrium and show that every Nash equilibrium lies on the Spohn variety, the algebraic model for dependency equilibria. For generic games, the set of real points of the Spohn variety is Zariski dense. Furthermore, every Nash equilibrium in this case is a dependency equilibrium. Finally, we present a detailed analysis of the geometric structure of dependency equilibria for $(2\times2)$-games.

Citations (1)

Summary

We haven't generated a summary for this paper yet.