Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A general Greenlees-May splitting principle (2405.18885v1)

Published 29 May 2024 in math.KT, math.AT, and math.OA

Abstract: In equivariant topology, Greenlees and May used Mackey functors to show that, rationally, the stable homotopy category of $G$-spectra over a finite group $G$ splits as a product of simpler module categories. We extend the algebraic part (also independently proved by Th\'evenaz and Webb) of this classical result to Mackey modules over an arbitrary Green functor, and use the case of the complex representation ring Green functor to obtain an algebraic model of the rational equivariant Kasparov category of $G$-cell algebras.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. David Barnes. Classifying rational GšŗGitalic_G-spectra for finite GšŗGitalic_G. Homology Homotopy Appl., 11(1):141–170, 2009.
  2. Naive-commutative ring structure on rational equivariant Kš¾Kitalic_K-theory for abelian groups. Topology Appl., 316:Paper No. 108100, 18, 2022.
  3. An introduction to algebraic models for rational GšŗGitalic_G-spectra. In Equivariant topology and derived algebra, volume 474 of London Math. Soc. Lecture Note Ser., pages 119–179. Cambridge Univ. Press, Cambridge, 2022.
  4. Serge Bouc. Green functors and GšŗGitalic_G-sets, volume 1671 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997.
  5. Ivo Dell’Ambrogio. Tensor triangular geometry and K⁢Kš¾š¾KKitalic_K italic_K-theory. J. Homotopy Relat. Struct., 5(1):319–358, 2010.
  6. Ivo Dell’Ambrogio. Equivariant Kasparov theory of finite groups via Mackey functors. J. Noncommut. Geom., 8(3):837–871, 2014.
  7. Ivo Dell’Ambrogio. Green 2-functors. Trans. Am. Math. Soc., 375(11):7783–7829, 2022.
  8. An equivariant Lefschetz fixed-point formula for correspondences. Doc. Math., 19:141–194, 2014.
  9. Generalized Tate cohomology. Mem. Amer. Math. Soc., 113(543):viii+178, 1995.
  10. J.Ā P.Ā C. Greenlees. Some remarks on projective Mackey functors. J. Pure Appl. Algebra, 81(1):17–38, 1992.
  11. G.Ā G. Kasparov. Equivariant K⁢Kš¾š¾KKitalic_K italic_K-theory and the Novikov conjecture. Invent. Math., 91(1):147–201, 1988.
  12. Magdalena Kędziorek. An algebraic model for rational GšŗGitalic_G-spectra over an exceptional subgroup. Homology Homotopy Appl., 19(2):289–312, 2017.
  13. L.Ā Gaunce Lewis, Jr. and MichaelĀ A. Mandell. Equivariant universal coefficient and Künneth spectral sequences. Proc. London Math. Soc. (3), 92(2):505–544, 2006.
  14. The Baum-Connes conjecture via localisation of categories. Topology, 45(2):209–259, 2006.
  15. Susan Montgomery. Fixed rings of finite automorphism groups of associative rings, volume 818 of Lecture Notes in Mathematics. Springer, Berlin, 1980.
  16. Stefan Schwede. Global Homotopy Theory, volumeĀ 32 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2018.
  17. Jacques ThĆ©venaz. Some remarks on GšŗGitalic_G-functors and the Brauer morphism. J. Reine Angew. Math., (384):24–56, 1988.
  18. Jacques ThĆ©venaz. GšŗGitalic_G-algebras and modular representation theory. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 1995. Oxford Science Publications.
  19. The structure of Mackey functors. Trans. Amer. Math. Soc., 347(6):1865–1961, 1995.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com