Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral measure of large random Helson matrices (2405.18796v3)

Published 29 May 2024 in math.PR and math.NT

Abstract: We study the limiting spectral measure of large random Helson matrices and large random matrices of certain patterned structures. Given a real random variable $X \in L{2+ \varepsilon}(\mathbb{P}) $ for some $\varepsilon > 0$ and $\mathrm{Var}(X) = 1$. For the random $n \times n$ Helson matrices generated by the independent copies of $X$, scaling the eigenvalues by $\sqrt{n}$, we prove the almost sure weak convergence of the spectral measure to the standard Wigner semi-circular law. Similar results are established for large random matrices with certain general patterned structures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (20)
  1. An introduction to random matrices, volume 118 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2010.
  2. Tom M. Apostol. Introduction to analytic number theory. Undergraduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1976.
  3. Zhidong Bai. Methodologies in spectral analysis of large-dimensional random matrices, a review. Statist. Sinica, 9(3):611–677, 1999. With comments by G. J. Rodgers and Jack W. Silverstein; and a rejoinder by the author.
  4. Spectral analysis of large dimensional random matrices. Springer Series in Statistics. Springer, New York, second edition, 2010.
  5. Matrix concentration inequalities and free probability. Invent. Math., 234(1):419–487, 2023.
  6. Arup Bose. Random Matrices and Non-Commutative Probability. Chapman and Hall/CRC, 2021.
  7. Another look at the moment method for large dimensional random matrices. Electron. J. Probab., 13:no. 21, 588–628, 2008.
  8. Projecting onto Helson matrices in Schatten classes. Studia Math., 256(1):109–119, 2021.
  9. Failure of Nehari’s theorem for multiplicative Hankel forms in Schatten classes. Studia Math., 228(2):101–108, 2015.
  10. Spectral measure of large random Hankel, Markov and Toeplitz matrices. Ann. Probab., 34(1):1–38, 2006.
  11. Richard M. Dudley. Real analysis and probability, volume 74 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002. Revised reprint of the 1989 original.
  12. Proof methods in random matrix theory. Probab. Surv., 20:291–381, 2023.
  13. Kevin Ford. The distribution of integers with a divisor in a given interval. Ann. of Math. (2), 168(2):367–433, 2008.
  14. Henry Helson. Hankel forms and sums of random variables. Studia Math., 176(1):85–92, 2006.
  15. Viktor B. Lidskiĭ. On the characteristic numbers of the sum and product of symmetric matrices. Doklady Akad. Nauk SSSR (N.S.), 75:769–772, 1950.
  16. A helson matrix with explicit eigenvalue asymptotics. Journal of Functional Analysis, 275(4):967–987, 2018.
  17. A lower bound in Nehari’s theorem on the polydisc. J. Anal. Math., 118(1):339–342, 2012.
  18. On helson matrices: moment problems, non-negativity, boundedness, and finite rank. Proceedings of the London Mathematical Society, 116(1):101–134, 2018.
  19. Henry Teicher. Almost certain convergence in double arrays. Z. Wahrsch. Verw. Gebiete, 69(3):331–345, 1985.
  20. Eugene P. Wigner. On the distribution of the roots of certain symmetric matrices. Ann. of Math. (2), 67:325–327, 1958.

Summary

We haven't generated a summary for this paper yet.