Certifying Counterfactual Bias in LLMs (2405.18780v3)
Abstract: LLMs can produce biased responses that can cause representational harms. However, conventional studies are insufficient to thoroughly evaluate biases across LLM responses for different demographic groups (a.k.a. counterfactual bias), as they do not scale to large number of inputs and do not provide guarantees. Therefore, we propose the first framework, LLMCert-B that certifies LLMs for counterfactual bias on distributions of prompts. A certificate consists of high-confidence bounds on the probability of unbiased LLM responses for any set of counterfactual prompts - prompts differing by demographic groups, sampled from a distribution. We illustrate counterfactual bias certification for distributions of counterfactual prompts created by applying prefixes sampled from prefix distributions, to a given set of prompts. We consider prefix distributions consisting random token sequences, mixtures of manual jailbreaks, and perturbations of jailbreaks in LLM's embedding space. We generate non-trivial certificates for SOTA LLMs, exposing their vulnerabilities over distributions of prompts generated from computationally inexpensive prefix distributions.