Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genshin: General Shield for Natural Language Processing with Large Language Models (2405.18741v2)

Published 29 May 2024 in cs.CL and cs.AI

Abstract: LLMs like ChatGPT, Gemini, or LLaMA have been trending recently, demonstrating considerable advancement and generalizability power in countless domains. However, LLMs create an even bigger black box exacerbating opacity, with interpretability limited to few approaches. The uncertainty and opacity embedded in LLMs' nature restrict their application in high-stakes domains like financial fraud, phishing, etc. Current approaches mainly rely on traditional textual classification with posterior interpretable algorithms, suffering from attackers who may create versatile adversarial samples to break the system's defense, forcing users to make trade-offs between efficiency and robustness. To address this issue, we propose a novel cascading framework called Genshin (General Shield for Natural Language Processing with LLMs), utilizing LLMs as defensive one-time plug-ins. Unlike most applications of LLMs that try to transform text into something new or structural, Genshin uses LLMs to recover text to its original state. Genshin aims to combine the generalizability of the LLM, the discrimination of the median model, and the interpretability of the simple model. Our experiments on the task of sentimental analysis and spam detection have shown fatal flaws of the current median models and exhilarating results on LLMs' recovery ability, demonstrating that Genshin is both effective and efficient. In our ablation study, we unearth several intriguing observations. Utilizing the LLM defender, a tool derived from the 4th paradigm, we have reproduced BERT's 15% optimal mask rate results in the 3rd paradigm of NLP. Additionally, when employing the LLM as a potential adversarial tool, attackers are capable of executing effective attacks that are nearly semantically lossless.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiao Peng (5 papers)
  2. Tao Liu (349 papers)
  3. Ying Wang (366 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets