Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymmetrical estimator for training encapsulated deep photonic neural networks (2405.18458v3)

Published 28 May 2024 in cs.LG and physics.optics

Abstract: Photonic neural networks (PNNs) are fast in-propagation and high bandwidth paradigms that aim to popularize reproducible NN acceleration with higher efficiency and lower cost. However, the training of PNN is known to be a challenge, where the device-to-device and system-to-system variations create imperfect knowledge of the PNN. Despite backpropagation (BP)-based training algorithms often being the industry standard for their robustness, generality, and fast gradient convergence for digital training, existing PNN-BP methods rely heavily on the accurate intermediate state extraction for a deep PNN (DPNN). These information accesses truncate the photonic signal propagation, bottlenecking DPNN's operation speed and increasing the system construction cost. Here, we introduce the asymmetrical training (AT) method, tailored for encapsulated DPNNs, where the signal is preserved in the analogue photonic domain for the entire structure. AT's minimum information readout for training bypasses analogue-digital interfaces wherever possible for fast operation and minimum system footprint. AT's error tolerance and generality aim to promote PNN acceleration in a widened operational scenario despite the fabrication variations and imperfect controls. We demonstrated AT for encapsulated DPNN with integrated photonic chips, repeatably enhancing the performance from in-silico BP for different network structures and datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.