Computational Characterization of Symmetry-Protected Topological Phases in Open Quantum Systems (2405.18364v1)
Abstract: It is a challenging problem to correctly characterize the symmetry-protected topological (SPT) phases in open quantum systems. As the measurement-based quantum computation (MBQC) utilizes non-trivial edge states of the SPT phases as the logical qubit, its computational power is closely tied to the non-trivial topological nature of the phases. In this paper, we propose to use the gate fidelity which is a measure of the computational power of the MBQC to identify the SPT phases in mixed-state settings. Specifically, we investigate the robustness of the Haldane phase by considering the MBQC on the Affleck-Kennedy-Lieb-Tasaki state subject to different types of noises. To illustrate how our criterion works, we analytically and numerically calculated the gate fidelity to find that its behavior depends crucially on whether the noises satisfy a certain symmetry condition with respect to the on-site $\mathbb{Z}_2 \times \mathbb{Z}_2$ symmetry. In particular, the fidelity for the identity gate, which is given by the sum of the non-local string order parameters, plays an important role. Furthermore, we demonstrate that a stronger symmetry conditions are required to be able to perform other (e.g., the $Z$-rotation gate) gates with high fidelity. By examining which unitary gates can be implemented with the MBQC on the decohered states, we can gain a useful insight into the richer structure of noisy SPT states that cannot be captured solely by the string order parameters.
- X.-G. Wen, Rev. Mod. Phys. 89, 041004 (2017).
- Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
- F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983a).
- F. Haldane, Phys. Lett. A 93, 464 (1983b).
- M. den Nijs and K. Rommelse, Phys. Rev. B 40, 4709 (1989).
- T. Kennedy, J. Phys. Condens. Matter 2, 5737 (1990).
- M. B. Hastings, J. Stat. Mech. Theory Exp. 2007, P08024 (2007).
- F. Pollmann and A. M. Turner, Phys. Rev. B 86, 125441 (2012).
- R. Raussendorf and H. J. Briegel, Phys. Rev. Lett. 86, 5188 (2001).
- G. K. Brennen and A. Miyake, Phys. Rev. Lett. 101, 010502 (2008).
- M. A. Nielsen, Phys. Lett. A 308, 96 (2003).
- D. Gottesman and I. L. Chuang, Nature 402, 390 (1999).
- A. C. Doherty and S. D. Bartlett, Phys. Rev. Lett. 103, 020506 (2009).
- A. Miyake, Phys. Rev. Lett. 105, 040501 (2010).
- A. Uhlmann, Rep. Math. Phys. 24, 229 (1986).
- Z. Huang and D. P. Arovas, Phys. Rev. Lett. 113, 076407 (2014).
- J. C. Budich and S. Diehl, Phys. Rev. B 91, 165140 (2015).
- E. P. L. van Nieuwenburg and S. D. Huber, Phys. Rev. B 90, 075141 (2014).
- R. Ma and A. Turzillo, “Symmetry protected topological phases of mixed states in the doubled space,” (2024), arXiv:2403.13280 [quant-ph] .
- J. Y. Lee, Y.-Z. You, and C. Xu, “Symmetry protected topological phases under decoherence,” (2024), arXiv:2210.16323 [cond-mat.str-el] .
- U. Schollwc̈k, Ann. Phys. 326, 96 (2011).
- S. R. White and D. A. Huse, Phys. Rev. B 48, 3844 (1993).
- R. Orús and G. Vidal, Phys. Rev. B 78, 155117 (2008).
- K. Hasebe and K. Totsuka, Phys. Rev. B 87, 045115 (2013).
- H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002).
- M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2011).
- B. Buča and T. Prosen, New J. Phys. 14, 073007 (2012).
- D. Gross and J. Eisert, Phys. Rev. Lett. 98, 220503 (2007).
- Of course, this definition might be too strict for the practical implementation. We have introduced this stringent definition solely for clearly defining the stability of SPT phases in the mixed-state settings.
- D. Paszko, D. C. Rose, M. H. Szymańska, and A. Pal, “Edge modes and symmetry-protected topological states in open quantum systems,” (2023), arXiv:2310.09406 [quant-ph] .
- We do not exclude here the possibility that MBQC on noisy AKLT states could potentially be one-qubit universal at the practical level for a finite duration even in this simple MBQC scheme. To investigate what kind of quantum channels leave the noisy AKLT states one-qubit universal would be one of the most practically important problems from the viewpoint of both condensed matter physics and quantum information.