General theory for localizing the where and when of entropy production meets single-molecule experiments (2405.18316v2)
Abstract: The laws of thermodynamics apply to biophysical systems on the nanoscale as described by the framework of stochastic thermodynamics. This theory provides universal, exact relations for quantities like work, which have been verified in experiments where a fully resolved description allows direct access to such quantities. Complementary studies consider partially hidden, coarse-grained descriptions, in which the mean entropy production typically is not directly accessible but can be bounded in terms of observable quantities. Going beyond the mean, we introduce a fluctuating entropy production that applies to individual trajectories in a coarse-grained description under time-dependent driving. Thus, this concept is applicable to the broad and experimentally significant class of driven systems in which not all relevant states can be resolved. We provide a paradigmatic example by studying an experimentally verified protein unfolding process. As a consequence, the entire distribution of the coarse-grained entropy production rather than merely its mean retains spatial and temporal information about the microscopic process. In particular, we obtain a bound on the distribution of the physical entropy production of individual unfolding events.
- K. Sekimoto, Stochastic Energetics (Springer, Berlin, Heidelberg, 2010).
- C. Jarzynski, Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale, Ann. Rev. Cond. Mat. Phys. 2, 329 (2011).
- S. Ciliberto, Experiments in stochastic thermodynamics: Short history and perspectives, Phys. Rev. X 7, 021051 (2017).
- J. P. Pekola, Towards quantum thermodynamics in electronic circuits, Nature Phys. 11, 118 (2015).
- F. Ritort, Single-molecule experiments in biological physics: methods and applications, JPCond 18, R531 (2006).
- C.-B. Li and S. Toyabe, Efficiencies of molecular motors: a comprehensible overview, Biophysical Reviews 12, 419–423 (2020).
- A. C. Barato and U. Seifert, Thermodynamic uncertainty relation for biomolecular processes, PRL 114, 158101 (2015).
- J. M. Horowitz and T. R. Gingrich, Thermodynamic uncertainty relations constrain non-equilibrium fluctuations, Nat. Phys. 16, 15 (2020).
- L. Oberreiter, U. Seifert, and A. C. Barato, Universal minimal cost of coherent biochemical oscillations, Phys. Rev. E 106, 014106 (2022).
- N. Ohga, S. Ito, and A. Kolchinsky, Thermodynamic bound on the asymmetry of cross-correlations, Phys. Rev. Lett. 131, 077101 (2023).
- E. Aurell, C. Mejía-Monasterio, and P. Muratore-Ginanneschi, Optimal protocols and optimal transport in stochastic thermodynamics, PRL 106, 250601 (2011).
- N. Shiraishi, K. Funo, and K. Saito, Speed limit for classical stochastic processes, Phys. Rev. Lett. 121, 070601 (2018).
- A. M. Berezhkovskii and D. E. Makarov, On the forward/backward symmetry of transition path time distributions in nonequilibrium systems, The Journal of Chemical Physics 151, 065102 (2019).
- D. J. Skinner and J. Dunkel, Estimating entropy production from waiting time distributions, PRL 127, 198101 (2021).
- É. Fodor, R. L. Jack, and M. E. Cates, Irreversibility and biased ensembles in active matter: Insights from stochastic thermodynamics, Annual Review of Condensed Matter Physics 13, 215 (2022), https://doi.org/10.1146/annurev-conmatphys-031720-032419 .
- T. Van Vu, V. T. Vo, and Y. Hasegawa, Entropy production estimation with optimal current, Physical Review E 101, 042138 (2020).
- T. Koyuk and U. Seifert, Thermodynamic uncertainty relation for time-dependent driving, PRL 125, 260604 (2020).
- A. Dechant and S. I. Sasa, Improving thermodynamic bounds using correlations, Phys. Rev. X 11, 041061 (2021).
- A. Dechant, J. Garnier-Brun, and S.-i. Sasa, Thermodynamic bounds on correlation times, Phys. Rev. Lett. 131, 167101 (2023).
- P. Pietzonka and F. Coghi, Thermodynamic cost for precision of general counting observables, arXiv:2305.15392 (2023).
- I. Neri and M. Polettini, Extreme value statistics of edge currents in Markov jump processes and their use for entropy production estimation, SciPost Phys. 14, 131 (2023).
- R. Kawai, J. M. R. Parrondo, and C. van den Broeck, Dissipation: The phase-space perspective, PRL 98, 080602 (2007).
- E. Roldan and J. M. R. Parrondo, Estimating dissipation from single stationary trajectories, PRL 105, 150607 (2010).
- N. Shiraishi and T. Sagawa, Fluctuation theorem for partially masked nonequilibrium dynamics, PRE 91, 012130 (2015).
- D. Hartich and A. Godec, Emergent memory and kinetic hysteresis in strongly driven networks, Phys. Rev. X 11, 041047 (2021).
- J. van der Meer, B. Ertel, and U. Seifert, Thermodynamic inference in partially accessible markov networks: A unifying perspective from transition-based waiting time distributions, Phys. Rev. X 12, 031025 (2022).
- J. van der Meer, J. Degünther, and U. Seifert, Time-resolved statistics of snippets as general framework for model-free entropy estimators, Phys. Rev. Lett. 130, 257101 (2023).
- J. Degünther, J. van der Meer, and U. Seifert, Fluctuating entropy production on the coarse-grained level: Inference and localization of irreversibility, Phys. Rev. Res. 6, 023175 (2024).
- M. Esposito, Stochastic thermodynamics under coarse-graining, PRE 85, 041125 (2012).
- U. Seifert, From stochastic thermodynamics to thermodynamic inference, Ann. Rev. Cond. Mat. Phys. 10, 171 (2019).
- D. Hartich and A. Godec, Violation of local detailed balance upon lumping despite a clear timescale separation, Phys. Rev. Res. 5, L032017 (2023).
- A. Godec and D. E. Makarov, \ORIGselectlanguageenglishChallenges in Inferring the Directionality of Active Molecular Processes from Single-Molecule Fluorescence Resonance Energy Transfer Trajectories, The Journal of Physical Chemistry Letters 14, 49 (2023).
- G. Hummer and A. Szabo, Free energy reconstruction from nonequilibrium single-molecule pulling experiments, PNAS 98, 3658 (2001).
- M. T. Woodside and S. M. Block, Reconstructing folding energy landscapes by single-molecule force spectroscopy, Annual Review of Biophysics 43, 19 (2014).
- J. Camunas-Soler, M. Ribezzi-Crivellari, and F. Ritort, Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy, Annual Review of Biophysics 45, 65 (2016).
- R. Satija, A. M. Berezhkovskii, and D. E. Makarov, Broad distributions of transition-path times are fingerprints of multidimensionality of the underlying free energy landscapes, Proceedings of the National Academy of Sciences 117, 27116 (2020).
- A. M. Berezhkovskii and D. E. Makarov, Single-molecule test for markovianity of the dynamics along a reaction coordinate, The Journal of Physical Chemistry Letters 9, 2190 (2018).
- A. Lapolla and A. c. v. Godec, Toolbox for quantifying memory in dynamics along reaction coordinates, Phys. Rev. Res. 3, L022018 (2021).
- R. E. Spinney and I. J. Ford, Nonequilibrium thermodynamics of stochastic systems with odd and even variables, PRL 108, 170603 (2012).