Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automorphisms and deformations of regular semisimple Hessenberg varieties (2405.18313v2)

Published 28 May 2024 in math.AG

Abstract: We show that regular semisimple Hessenberg varieties can have moduli. To be precise, suppose $X$ is a regular semisimple Hessenberg variety of codimension 1 in the flag variety $G/B$, where $G$ is a simple algebraic group of rank $r$ over $\mathbb{C}$ and $B$ is a Borel subgroup. We show that the space $\mathrm{H}1(X,TX)$ of first order deformations of $X$ has dimension $r-1$ except in type $A_2$. (In type $A_2$, the Hessenberg varieties in question are all isomorphic to the permutohedral toric surface, and $\mathrm{dim}\mathrm{H}1(X,TX)=0$.) Moreover, we show that the Kodaira-Spencer map $\mathfrak{g}\to\mathrm{H}1(X,TX)$ is onto, that the connected component of the automorphism group of $X$ is the maximal torus of $G$, and that $\mathrm{H}i(X,TX)=0$ for $i\geq2$. Along the way, we prove several theorems of independent interest about the cohomology of homogeneous vector bundles on $G/B$. In type $A$, we can give an even more precise statement determining when two codimension $1$ regular semisimple Hessenberg varieties in $G/B$ are isomorphic. We also compute the automorphism groups explicitly in type $A_{n-1}$ in the terms of stabilizer subgroups of the action of the symmetric group $S_n$ on the moduli space $M_{0,n+1}$ of smooth genus $0$ curves with $n+1$ marked points. Using this, we describe the moduli stack of the regular semisimple Hessenberg varieties $X$ explicitly as a quotient stack of $M_{0,n+1}$. We prove several analogous results for Hessenberg varieties in generalized flag varieties $G/P$, where $P$ is a parabolic subgroup of $G$. In type $A$, these results are used in the proofs of the results for $G/B$, but they are also independently interesting because the associated moduli stacks are related directly to the action of $S_n$ on $M_{0,n}$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. Fano and weak Fano Hessenberg varieties. Michigan Math. J., 73(3):511–555, 2023.
  2. The cohomology rings of regular semisimple Hessenberg varieties for h=(h⁢(1),n,…,n)ℎℎ1𝑛…𝑛h=(h(1),n,\dots,n)italic_h = ( italic_h ( 1 ) , italic_n , … , italic_n ). J. Comb., 10(1):27–59, 2019.
  3. Twisted bundles and admissible covers. Comm. Algebra, 31(8):3547–3618, 2003. Special issue in honor of Steven L. Kleiman.
  4. D. Abramovich and B. Hassett. Stable varieties with a twist. In Classification of algebraic varieties, EMS Ser. Congr. Rep., pages 1–38. Eur. Math. Soc., Zürich, 2011.
  5. D. N. Akhiezer. Lie group actions in complex analysis. Aspects of Mathematics, E27. Friedr. Vieweg & Sohn, Braunschweig, 1995.
  6. J. Alper. Good moduli spaces for Artin stacks. Ann. Inst. Fourier (Grenoble), 63(6):2349–2402, 2013.
  7. The second cohomology of regular semisimple Hessenberg varieties from GKM theory. Tr. Mat. Inst. Steklova, 317:5–26, 2022.
  8. N. Bourbaki. Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines. Actualités Scientifiques et Industrielles, No. 1337. Hermann, Paris, 1968.
  9. B. Broer. Normality of some nilpotent varieties and cohomology of line bundles on the cotangent bundle of the flag variety. In Lie theory and geometry, volume 123 of Progr. Math., pages 1–19. Birkhäuser Boston, Boston, MA, 1994.
  10. Representations on the cohomology of ℳ¯0,nsubscript¯ℳ0𝑛\overline{\mathcal{M}}_{0,n}over¯ start_ARG caligraphic_M end_ARG start_POSTSUBSCRIPT 0 , italic_n end_POSTSUBSCRIPT. Adv. Math., 435:Paper No. 109364, 66, 2023.
  11. Hessenberg varieties. Trans. Amer. Math. Soc., 332(2):529–534, 1992.
  12. M. Demazure. A very simple proof of Bott’s theorem. Invent. Math., 33(3):271–272, 1976.
  13. M. Demazure. Automorphismes et déformations des variétés de Borel. Invent. Math., 39(2):179–186, 1977.
  14. I. Dolgachev. Lectures on invariant theory, volume 296 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2003.
  15. I. Dolgachev. Mckay correspondence, 2009.
  16. W. Fulton and J. Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. A first course, Readings in Mathematics.
  17. Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math., 131(1):25–83, 1998.
  18. B. Hassett. Moduli spaces of weighted pointed stable curves. Adv. Math., 173(2):316–352, 2003.
  19. Automorphisms of GKM graphs and regular semisimple Hessenberg varieties. Preprint, arXiv:2405.16399.
  20. B. Johnson and E. Sommers. Equations for some nilpotent varieties. Int. Math. Res. Not. IMRN, (14):4433–4464, 2020.
  21. M. M. Kapranov. Chow quotients of Grassmannians. I. In I. M. Gel′fand Seminar, volume 16, Part 2 of Adv. Soviet Math., pages 29–110. Amer. Math. Soc., Providence, RI, 1993.
  22. Y.-H. Kiem and D. Lee. Birational geometry of generalized Hessenberg varieties and the generalized Shareshian-Wachs conjecture. J. Combin. Theory Ser. A, 206:Paper No. 105884, 2024.
  23. F. F. Knudsen. The projectivity of the moduli space of stable curves. III. The line bundles on Mg,nsubscript𝑀𝑔𝑛M_{g,n}italic_M start_POSTSUBSCRIPT italic_g , italic_n end_POSTSUBSCRIPT, and a proof of the projectivity of M¯g,nsubscript¯𝑀𝑔𝑛\overline{M}_{g,n}over¯ start_ARG italic_M end_ARG start_POSTSUBSCRIPT italic_g , italic_n end_POSTSUBSCRIPT in characteristic 00. Math. Scand., 52(2):200–212, 1983.
  24. J. Kollár. Families of varieties of general type, volume 231 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2023. With the collaboration of Klaus Altmann and Sándor J. Kovács.
  25. Rational connectedness and boundedness of Fano manifolds. J. Differential Geom., 36(3):765–779, 1992.
  26. Frobenius splitting of cotangent bundles of flag varieties. Invent. Math., 136(3):603–621, 1999.
  27. I. G. Macdonald. The Poincaré series of a Coxeter group. Math. Ann., 199:161–174, 1972.
  28. H.-B. Moon and D. Swinarski. Effective curves on M¯0,nsubscript¯M0𝑛\overline{\rm M}_{0,n}over¯ start_ARG roman_M end_ARG start_POSTSUBSCRIPT 0 , italic_n end_POSTSUBSCRIPT from group actions. Manuscripta Math., 147(1-2):239–268, 2015.
  29. Geometric invariant theory, volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)]. Springer-Verlag, Berlin, third edition, 1994.
  30. M. Olsson. Algebraic spaces and stacks, volume 62 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2016.
  31. M. Romagny. Group actions on stacks and applications. Michigan Math. J., 53(1):209–236, 2005.
  32. E. Sommers. Cohomology of line bundles on the cotangent bundle of a Grassmannian. Proc. Amer. Math. Soc., 137(10):3291–3296, 2009.
  33. J. S. Tymoczko. Permutation actions on equivariant cohomology of flag varieties. In Toric topology, volume 460 of Contemp. Math., pages 365–384. Amer. Math. Soc., Providence, RI, 2008.
  34. Y. Wu and B. Xu. Moduli spaces of unordered n≥5𝑛5n\geq 5italic_n ≥ 5 points on the Riemann sphere and their singularities. Preprint, arXiv:1704.07583v3.
Citations (1)

Summary

We haven't generated a summary for this paper yet.