Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Carbon-Aware Computing in a Network of Data Centers: A Hierarchical Game-Theoretic Approach (2405.18070v1)

Published 28 May 2024 in cs.GT and cs.NI

Abstract: Over the past decade, the continuous surge in cloud computing demand has intensified data center workloads, leading to significant carbon emissions and driving the need for improving their efficiency and sustainability. This paper focuses on the optimal allocation problem of batch compute loads with temporal and spatial flexibility across a global network of data centers. We propose a bilevel game-theoretic solution approach that captures the inherent hierarchical relationship between supervisory control objectives, such as carbon reduction and peak shaving, and operational objectives, such as priority-aware scheduling. Numerical simulations with real carbon intensity data demonstrate that the proposed approach successfully reduces carbon emissions while simultaneously ensuring operational reliability and priority-aware scheduling.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (24)
  1. International Energy Agency, “Global trends in internet traffic, data centres workloads and data centre energy use, 2010-2020, iea, paris,” 2020. [Online]. Available: https://t.ly/R5Gy
  2. Synergy Research Group, “Number of hyperscale data centers worldwide from 2015 to 2021,” 2021.
  3. International Energy Agency, “Data centres and data transmission networks,” 2023. [Online]. Available: https://t.ly/bmyWg
  4. A. Khosravi, L. L. H. Andrew, and R. Buyya, “Dynamic vm placement method for minimizing energy and carbon cost in geographically distributed cloud data centers,” IEEE Transactions on Sustainable Computing, vol. 2, no. 2, pp. 183–196, 2017.
  5. Z. Liu, A. Wierman, Y. Chen, B. Razon, and N. Chen, “Data center demand response: Avoiding the coincident peak via workload shifting and local generation,” Performance Evaluation, vol. 70, no. 10, pp. 770–791, 2013.
  6. R. Rahmani, I. Moser, and A. L. Cricenti, “Inter-continental data centre power load balancing for renewable energy maximisation,” Electronics, vol. 11, no. 10, p. 1564, 2022.
  7. M. Xu and R. Buyya, “Managing renewable energy and carbon footprint in multi-cloud computing environments,” Journal of Parallel and Distributed Computing, vol. 135, pp. 191–202, 2020.
  8. N. Buchbinder, N. Jain, and I. Menache, “Online job-migration for reducing the electricity bill in the cloud,” in Networking, 2011, Conference Proceedings.
  9. J. Shuja, A. Gani, S. Shamshirband, R. W. Ahmad, and K. Bilal, “Sustainable cloud data centers: A survey of enabling techniques and technologies,” Renewable and Sustainable Energy Reviews, vol. 62, pp. 195–214, 2016.
  10. M. Dabbagh, B. Hamdaoui, A. Rayes, and M. Guizani, “Shaving data center power demand peaks through energy storage and workload shifting control,” IEEE Transactions on Cloud Computing, vol. 7, no. 4, pp. 1095–1108, 2019.
  11. M. T. Takcı, T. Gözel, and M. H. Hocaoğlu, “Quantitative evaluation of data centers’ participation in demand side management,” IEEE Access, vol. 9, pp. 14 883–14 896, 2021.
  12. A. Radovanovic, B. Chen, S. Talukdar, B. Roy, A. Duarte, and M. Shahbazi, “Power modeling for effective datacenter planning and compute management,” IEEE Transactions on Smart Grid, vol. 13, no. 2, pp. 1611–1621, 2022.
  13. J. Doyle, R. Shorten, and D. O. Mahony, “Stratus: Load balancing the cloud for carbon emissions control,” IEEE Transactions on Cloud Computing, vol. 1, no. 1, pp. 1–1, 2013.
  14. A. Radovanovic, R. Koningstein, I. Schneider, B. Chen, A. Duarte, B. Roy, D. Xiao, M. Haridasan, P. Hung, N. Care, S. Talukdar, E. Mullen, K. Smith, M. Cottman, and W. Cirne, “Carbon-Aware Computing for Datacenters,” IEEE Transactions on Power Systems, vol. 38, no. 2, pp. 1270–1280, 2023. [Online]. Available: https://ieeexplore.ieee.org/document/9770383/
  15. P. D. Grontas, G. Belgioioso, C. Cenedese, M. Fochesato, J. Lygeros, and F. Dörfler, “Big hype: Best intervention in games via distributed hypergradient descent,” arXiv preprint arXiv:2303.01101, 2023.
  16. M. Maljkovic, G. Nilsson, and N. Geroliminis, “On finding the leader’s strategy in quadratic aggregative stackelberg pricing games,” in 2023 European Control Conference (ECC), 2023, pp. 1–6.
  17. G. Belgioioso, P. Yi, S. Grammatico, and L. Pavel, “Distributed generalized Nash equilibrium seeking: An operator-theoretic perspective,” IEEE Control Systems, vol. 42, no. 4, pp. 87–102, 2022.
  18. F. Facchinei, V. Piccialli, and M. Sciandrone, “Decomposition algorithms for generalized potential games,” Computational Optimization and Applications, vol. 50, no. 2, pp. 237–262, 2011.
  19. N. H. Tran, D. H. Tran, S. Ren, Z. Han, E. N. Huh, and C. S. Hong, “How geo-distributed data centers do demand response: A game-theoretic approach,” IEEE Transactions on Smart Grid, vol. 7, no. 2, pp. 937–947, 2016.
  20. F. Facchinei and C. Kanzow, “Generalized Nash equilibrium problems,” Annals of Operations Research, vol. 175, no. 1, pp. 177–211, 2010.
  21. B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer in neural networks,” in International Conference on Machine Learning.   PMLR, 2021, Conference Proceedings, pp. 136–145.
  22. Google, “Data center locations,” 2023. [Online]. Available: https://www.google.com/about/datacenters/locations/
  23. Electricity Maps, “Organising the world’s electricity data,” 2023. [Online]. Available: https://www.electricitymaps.com
  24. N. Hogade, S. Pasricha, and H. J. Siegel, “Energy and network aware workload management for geographically distributed data centers,” IEEE Transactions on Sustainable Computing, vol. 7, no. 2, pp. 400–413, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Enno Breukelman (1 paper)
  2. Sophie Hall (8 papers)
  3. Giuseppe Belgioioso (31 papers)
  4. Florian Dörfler (253 papers)
Citations (1)
X Twitter Logo Streamline Icon: https://streamlinehq.com