2000 character limit reached
$\infty$-Categorical Generalized Langlands Correspondence II: Langlands Program Formalism (2405.17909v3)
Published 28 May 2024 in math.RT and math.NT
Abstract: We extend the Langlands program in various subprograms with certain different generalizations: (1) Mixed-parity functorial perturbation of the usual Langlands program after Fargues-Scholze in all characteristics; (2) Robba-Frobenius sheafified functorial perturbation of the usual Langlands program after Fargues-Scholze and Kedlaya-Liu in all characteristics; (3) Arithmetic $D$-module theoretic functorial perturbation of the usual Langlands program after Fargues-Scholze and Abe-Kedlaya-Xu. In certain localized setting we construct Langlands correspondence from smooth representation side to Weil side through geometrized generalized Bernstein center.
- Robert Langlands. ”Letter to Weil.” In 1967.
- Lafforgue, Laurent. ”Chtoucas de Drinfeld et correspondance de Langlands.” Inventiones mathematicae 147 (2002): 1-241.
- Scholze, Peter. ”Étale cohomology of diamonds.” arXiv preprint arXiv:1709.07343 (2017).
- Clausen, Dustin and Peter Scholze. ”Lectures on Condensed Mathematics.” https://www.math.uni-bonn.de/people/scholze/Condensed.pdf.
- Clausen, Dustin and Peter Scholze. ”Lecture on Analytic Geometry.” https://www.math.uni-bonn.de/people/scholze/Analytic.pdf.