Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constrained monotone mean--variance investment-reinsurance under the Cramér--Lundberg model with random coefficients (2405.17841v2)

Published 28 May 2024 in q-fin.PM, math.OC, and q-fin.MF

Abstract: This paper studies an optimal investment-reinsurance problem for an insurer (she) under the Cram\'er--Lundberg model with monotone mean--variance (MMV) criterion. At any time, the insurer can purchase reinsurance (or acquire new business) and invest in a security market consisting of a risk-free asset and multiple risky assets whose excess return rate and volatility rate are allowed to be random. The trading strategy is subject to a general convex cone constraint, encompassing no-shorting constraint as a special case. The optimal investment-reinsurance strategy and optimal value for the MMV problem are deduced by solving certain backward stochastic differential equations with jumps. In the literature, it is known that models with MMV criterion and mean--variance criterion lead to the same optimal strategy and optimal value when the wealth process is continuous. Our result shows that the conclusion remains true even if the wealth process has compensated Poisson jumps and the market coefficients are random.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (1)
Citations (1)

Summary

We haven't generated a summary for this paper yet.