2000 character limit reached
Lyndon pairs and the lexicographically greatest perfect necklace (2405.17812v2)
Published 28 May 2024 in math.CO and cs.DM
Abstract: Fix a finite alphabet. A necklace is a circular word. For positive integers $n$ and~$k$, a necklace is $(n,k)$-perfect if all words of length $n$ occur $k$ times but at positions with different congruence modulo $k$, for any convention of the starting position. We define the notion of a Lyndon pair and we use it to construct the lexicographically greatest $(n,k)$-perfect necklace, for any $n$ and $k$ such that $n$ divides~$k$ or $k$ divides~$n$. Our construction generalizes Fredricksen and Maiorana's construction of the lexicographically greatest de Bruijn sequence of order $n$, based on the concatenation of the Lyndon words whose length divide $n$.
- Perfect necklaces. Advances in Applied Mathematics, 80:48 – 61, 2016.
- V. Becher and O. Carton. Normal numbers and perfect necklaces. Journal of Complexity, 54(101403), 2019.
- N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.Wetenschappen, 49:758–764, 1946. Indagationes Mathematicae 8 (1946) 461-467.
- J.-P. Duval. Mots de Lyndon et périodicité. RAIRO Informatique Théorique, 14(2):181–191, 1980.
- H. Fredricksen and J. Maiorana. Necklaces of beads in k𝑘\displaystyle kitalic_k colors and k𝑘\displaystyle kitalic_k-ary de Bruijn sequences. Discrete Mathematics, 23(3):207–210, 1978.
- D. Knuth. The art of computer programming. Volume 3. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and searching.
- N. Korobov. Normal periodic systems and their applications to the estimation of sums of fractional parts. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 15(1):17–46, 1951.
- N. Korobov. On normal periodic systems. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 16(3):211–216, 1952.
- M. B. Levin. On the discrepancy estimate of normal numbers. Acta Arithmetica, 88(2):99–111, 1999.
- R. C. Lyndon. On Burnside’s problem. Transactions of the American Mathematical Society, 77:202–215, 1954.
- R. C. Lyndon. On Burnside’s problem. II. Transactions of the American Mathematical Society, 78:329–332, 1955.