Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lyndon pairs and the lexicographically greatest perfect necklace (2405.17812v2)

Published 28 May 2024 in math.CO and cs.DM

Abstract: Fix a finite alphabet. A necklace is a circular word. For positive integers $n$ and~$k$, a necklace is $(n,k)$-perfect if all words of length $n$ occur $k$ times but at positions with different congruence modulo $k$, for any convention of the starting position. We define the notion of a Lyndon pair and we use it to construct the lexicographically greatest $(n,k)$-perfect necklace, for any $n$ and $k$ such that $n$ divides~$k$ or $k$ divides~$n$. Our construction generalizes Fredricksen and Maiorana's construction of the lexicographically greatest de Bruijn sequence of order $n$, based on the concatenation of the Lyndon words whose length divide $n$.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. Perfect necklaces. Advances in Applied Mathematics, 80:48 – 61, 2016.
  2. V. Becher and O. Carton. Normal numbers and perfect necklaces. Journal of Complexity, 54(101403), 2019.
  3. N. G. de Bruijn. A combinatorial problem. Koninklijke Nederlandse Akademie v.Wetenschappen, 49:758–764, 1946. Indagationes Mathematicae 8 (1946) 461-467.
  4. J.-P. Duval. Mots de Lyndon et périodicité. RAIRO Informatique Théorique, 14(2):181–191, 1980.
  5. H. Fredricksen and J. Maiorana. Necklaces of beads in k𝑘\displaystyle kitalic_k colors and k𝑘\displaystyle kitalic_k-ary de Bruijn sequences. Discrete Mathematics, 23(3):207–210, 1978.
  6. D. Knuth. The art of computer programming. Volume 3. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and searching.
  7. N. Korobov. Normal periodic systems and their applications to the estimation of sums of fractional parts. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 15(1):17–46, 1951.
  8. N. Korobov. On normal periodic systems. Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, 16(3):211–216, 1952.
  9. M. B. Levin. On the discrepancy estimate of normal numbers. Acta Arithmetica, 88(2):99–111, 1999.
  10. R. C. Lyndon. On Burnside’s problem. Transactions of the American Mathematical Society, 77:202–215, 1954.
  11. R. C. Lyndon. On Burnside’s problem. II. Transactions of the American Mathematical Society, 78:329–332, 1955.

Summary

We haven't generated a summary for this paper yet.