Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Higher Dimensional Brill-Noether Loci and Moduli for Very Ample Line Bundles (2405.17689v3)

Published 27 May 2024 in math.AG

Abstract: In this paper, we study Brill-Noether loci for higher dimensional varieties. Let $M$ be a moduli space of coherent sheaves on $X$. The Brill-Noether loci of $M$ are the closed subsets ${\mathcal{F} \in M : h0(X,\mathcal{F}) \geq k+1}$. When $X$ is a smooth curve and $M = \textbf{Pic}_Xd$, the space of degree $d$ line bundles on $X$, the Brill-Noether loci have a natural determinantal scheme structure coming from a map of vector bundles on $\textbf{Pic}_Xd$, which is the main tool in studying their geometry. In [CMR10], the authors generalize this to the case where $X$ is any variety and $M$ is the moduli space of stable vector bundles on $X$ with fixed invariants but require that $Hi(X,E) = 0$ for all $E \in M$ and $i \geq 2$. We generalize these results by showing how to give a natural determinantal scheme structure to the Brill-Noether loci for any $X$ and any $M$. In doing so we develop the theory of Fitting ideals for a complex which can be used to define natural scheme structures in other cases as well, such as the locus of points where the projective dimension of a coherent sheaf jumps up. As an application of our results, we construct moduli spaces for very ample line bundles on a variety.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (11)
  1. The brill-noether theory of the moduli spaces of sheaves on surfaces, 2023.
  2. L. Costa and R.M. Miró-Roig. Brill-Noether theory for moduli spaces of sheaves on algebraic varieties. Forum Math., 3(3):411–432, 2010.
  3. Geometry of algebraic curves. Volume I., volume 267 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 1985.
  4. Geometry of algebraic curves. Volume II. Grundlehren der mathematischen Wissenschaften. Springer-Verlag, 2011.
  5. Robin Hartshorne. Residues and duality. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer-Verlag, Berlin, 1966.
  6. Robin Hartshorne. Algebraic geometry. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
  7. Steven L. Kleiman. The picard scheme, 2005.
  8. David Mumford. Abelian varieties. Tata Institute of Fundamental Research Studies in Mathematics, No. 5. Published for the Tata Institute of Fundamental Research, Bombay, 1970.
  9. M. Noether. Zur grundlegung der theorie der algebraischen raumcurven. Journal für die reine und angewandte Mathematik, 93:271–318, 1882.
  10. The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2023.
  11. Charles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1994.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com