Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cryogenic Characterization of Low-Frequency Noise in 40-nm CMOS (2405.17685v1)

Published 27 May 2024 in physics.app-ph, cs.SY, and eess.SY

Abstract: This paper presents an extensive characterization of the low-frequency noise (LFN) at room temperature (RT) and cryogenic temperature (4.2 K) of 40-nm bulk-CMOS transistors. The noise is measured over a wide range of bias conditions and geometries to generate a comprehensive overview of LFN in this technology. While the RT results are in-line with the literature and the foundry models, the cryogenic behavior diverges in many aspects. These deviations include changes with respect to RT in magnitude and bias dependence that are conditional on transistor type and geometry, and even an additional systematic Lorentzian feature that is common among individual devices. Furthermore, we find the scaling of the average LFN with the area and its variability to be similar between RT and 4.2 K, with the cryogenic scaling reported systematically for the first time. The findings suggest that, as no consistent decrease of LFN at lower temperatures is observed while the white noise is reduced, the impact of LFN for precision analog design at cryogenic temperatures gains a more predominant role.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. L. Vandersypen, H. Bluhm, J. Clarke, A. Dzurak, R. Ishihara, A. Morello, D. Reilly, L. Schreiber, and M. Veldhorst, “Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent,” npj Quantum Information, vol. 3, no. 1, p. 34, 2017.
  2. R. Patterson, A. Hammoud, and M. Elbuluk, “Assessment of electronics for cryogenic space exploration missions,” Cryogenics, vol. 46, no. 2-3, pp. 231–236, 2006.
  3. A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais, and C. Enz, “Physical model of low-temperature to cryogenic threshold voltage in mosfets,” IEEE Journal of the Electron Devices Society, vol. 8, pp. 780–788, 2020.
  4. W. Chakraborty, K. A. Aabrar, J. Gomez, R. Saligram, A. Raychowdhury, P. Fay, and S. Datta, “Characterization and modeling of 22 nm fdsoi cryogenic rf cmos,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 7, no. 2, pp. 184–192, 2021.
  5. K. Ohmori and S. Amakawa, “Variable-temperature broadband noise characterization of mosfets for cryogenic electronics: From room temperature down to 3 k,” in 2023 7th IEEE Electron Devices Technology & Manufacturing Conference (EDTM).   IEEE, 2023, pp. 1–3.
  6. J. Gong, E. Charbon, F. Sebastiano, and M. Babaie, “A cryo-cmos pll for quantum computing applications,” IEEE Journal of Solid-State Circuits, 2022.
  7. L. Le Guevel, G. Billiot, B. Cardoso Paz, M. Tagliaferri, S. De Franceschi, R. Maurand, M. Cassé, M. Zurita, M. Sanquer, M. Vinet et al., “Low-power transimpedance amplifier for cryogenic integration with quantum devices,” Applied Physics Reviews, vol. 7, no. 4, p. 041407, 2020.
  8. I. Hafez, G. Ghibaudo, and F. Balestra, “Flicker noise in metal-oxide-semiconductor transistors from liquid helium to room temperature,” Journal of applied physics, vol. 66, no. 5, pp. 2211–2213, 1989.
  9. M. Aoki, H. Katto, and E. Yamada, “Low-frequency 1/f noise in MOSFET’s at low current levels,” Journal of Applied Physics, vol. 48, no. 12, pp. 5135–5140, 1977.
  10. B. C. Paz, M. Cassé, C. Theodorou, G. Ghibaudo, T. Kammler, L. Pirro, M. Vinet, S. de Franceschi, T. Meunier, and F. Gaillard, “Performance and low-frequency noise of 22-nm FDSOI down to 4.2 K for cryogenic applications,” IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4563–4567, 2020.
  11. G. Ghibaudo, O. Roux, C. Nguyen-Duc, F. Balestra, and J. Brini, “Improved analysis of low frequency noise in field-effect MOS transistors,” physica status solidi (a), vol. 124, no. 2, pp. 571–581, 1991.
  12. R. Asanovski, A. Grill, J. Franco, P. Palestri, A. Beckers, B. Kaczer, and L. Selmi, “Understanding the Excess 1/f Noise in MOSFETs at Cryogenic Temperatures,” IEEE Transactions on Electron Devices, 2023.
  13. I. Hafez, G. Ghibaudo, and F. Balestra, “Assessment of interface state density in silicon metal-oxide-semiconductor transistors at room, liquid-nitrogen, and liquid-helium temperatures,” Journal of applied physics, vol. 67, no. 4, pp. 1950–1952, 1990.
  14. H. Bohuslavskyi, A. Jansen, S. Barraud, V. Barral, M. Cassé, L. Le Guevel, X. Jehl, L. Hutin, B. Bertrand, G. Billiot et al., “Cryogenic subthreshold swing saturation in FD-SOI MOSFETs described with band broadening,” IEEE Electron Device Letters, vol. 40, no. 5, pp. 784–787, 2019.
  15. H. Oka, T. Matsukawa, K. Kato, S. Iizuka, W. Mizubayashi, K. Endo, T. Yasuda, and T. Mori, “Toward long-coherence-time Si spin Qubit: The origin of low-frequency noise in cryo-CMOS,” in 2020 IEEE Symposium on VLSI Technology.   IEEE, 2020, pp. 1–2.
  16. M. B. da Silva, H. P. Tuinhout, A. Zegers-van Duijnhoven, G. I. Wirth, and A. J. Scholten, “A physics-based statistical RTN model for the low frequency noise in MOSFETs,” IEEE Transactions on Electron Devices, vol. 63, no. 9, pp. 3683–3692, 2016.
  17. T. Inaba, H. Oka, H. Asai, H. Fuketa, S. Iizuka, K. Kato, S. Shitakata, K. Fukuda, and T. Mori, “Determining the low-frequency noise source in cryogenic operation of short-channel bulk mosfets,” in 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits).   IEEE, 2023, pp. 1–2.
  18. P. t Hart, M. Babaie, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Subthreshold mismatch in nanometer cmos at cryogenic temperatures,” in ESSDERC 2019-49th European Solid-State Device Research Conference (ESSDERC).   IEEE, 2019, pp. 98–101.
  19. G. Kiene and S. Ilik, “Data for: Low frequency noise characterization in 40nm Cryo-CMOS,” doi 10.4121/c41c26f7-586f-48ca-8abe-9127b2d97c60, 2023.
  20. R. M. Incandela, L. Song, H. Homulle, E. Charbon, A. Vladimirescu, and F. Sebastiano, “Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures,” IEEE Journal of the Electron Devices Society, vol. 6, pp. 996–1006, 2018.
  21. C. Rogers and R. Buhrman, “Nature of single-localized-electron states derived from tunneling measurements,” Physical review letters, vol. 55, no. 8, p. 859, 1985.
  22. J. Michl, A. Grill, D. Claes, G. Rzepa, B. Kaczer, D. Linten, I. Radu, T. Grasser, and M. Waltl, “Quantum mechanical charge trap modeling to explain BTI at cryogenic temperatures,” in 2020 IEEE International Reliability Physics Symposium (IRPS).   IEEE, 2020, pp. 1–6.
  23. J. Michl, A. Grill, D. Waldhoer, W. Goes, B. Kaczer, D. Linten, B. Parvais, B. Govoreanu, I. Radu, M. Waltl et al., “Efficient modeling of charge trapping at cryogenic temperatures—part i: Theory,” IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6365–6371, 2021.
  24. J. Michl, A. Grill, D. Waldhoer, W. Goes, B. Kaczer, D. Linten, B. Parvais, B. Govoreanu, I. Radu, T. Grasser et al., “Efficient modeling of charge trapping at cryogenic temperatures—part ii: Experimental,” IEEE Transactions on Electron Devices, vol. 68, no. 12, pp. 6372–6378, 2021.
  25. M. Kirton and M. Uren, “Noise in solid-state microstructures: A new perspective on individual defects, interface states and low-frequency (1/f) noise,” Advances in Physics, vol. 38, no. 4, pp. 367–468, 1989.
  26. J. Michl, A. Grill, B. Stampfer, D. Waldhoer, C. Schleich, T. Knobloch, E. Ioannidis, H. Enichlmair, R. Minixhofer, B. Kaczer et al., “Evidence of Tunneling Driven Random Telegraph Noise in Cryo-CMOS,” in 2021 IEEE International Electron Devices Meeting (IEDM).   IEEE, 2021, pp. 31–3.
  27. A. Schenk, P. P. Altermatt, and B. Schmithusen, “Physical model of incomplete ionization for silicon device simulation,” in 2006 International Conference on Simulation of Semiconductor Processes and Devices.   IEEE, 2006, pp. 51–54.
  28. G. Ghibaudo, “On the fluctuation-dissipation of the oxide trapped charge in a MOSFET operated down to deep cryogenic temperatures,” arXiv preprint arXiv:2204.04958, 2022.
  29. C. C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proceedings of the IEEE, vol. 84, no. 11, pp. 1584–1614, 1996.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com