Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Device-Edge Collaboration on DNN Inference in AIoT: A Digital Twin-Assisted Approach (2405.17664v1)

Published 27 May 2024 in cs.DC

Abstract: Device-edge collaboration on deep neural network (DNN) inference is a promising approach to efficiently utilizing network resources for supporting artificial intelligence of things (AIoT) applications. In this paper, we propose a novel digital twin (DT)-assisted approach to device-edge collaboration on DNN inference that determines whether and when to stop local inference at a device and upload the intermediate results to complete the inference on an edge server. Instead of determining the collaboration for each DNN inference task only upon its generation, multi-step decision-making is performed during the on-device inference to adapt to the dynamic computing workload status at the device and the edge server. To enhance the adaptivity, a DT is constructed to evaluate all potential offloading decisions for each DNN inference task, which provides augmented training data for a machine learning-assisted decision-making algorithm. Then, another DT is constructed to estimate the inference status at the device to avoid frequently fetching the status information from the device, thus reducing the signaling overhead. We also derive necessary conditions for optimal offloading decisions to reduce the offloading decision space. Simulation results demon-strate the outstanding performance of our DT-assisted approach in terms of balancing the tradeoff among inference accuracy, delay, and energy consumption.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. S. Hu, M. Li, J. Gao, C. Zhou, and X. Shen, “Digital twin-assisted adaptive DNN inference in industrial Internet of Things,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2022, pp. 1025–1030.
  2. X. Shen, J. Gao, W. Wu, M. Li, C. Zhou, and W. Zhuang, “Holistic network virtualization and pervasive network intelligence for 6G,” IEEE Commun. Surveys Tuts., vol. 24, no. 1, pp. 1–30, 2022.
  3. J. Zhang and D. Tao, “Empowering things with intelligence: A survey of the progress, challenges, and opportunities in artificial intelligence of things,” IEEE Internet Things J., vol. 8, no. 10, pp. 7789–7817, May 2021.
  4. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving the last mile of artificial intelligence with edge computing,” Proc. IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.
  5. X. Huang, P. He, A. Rangarajan, and S. Ranka, “Intelligent intersection: Two-stream convolutional networks for real-time near-accident detection in traffic video,” ACM Trans. Spatial Algorithms Syst., vol. 6, no. 2, pp. 1–28, June 2020.
  6. Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud and mobile edge,” ACM SIGARCH Comput. Archit. News, vol. 45, no. 1, pp. 615–629, Mar. 2017.
  7. X. Chen, J. Zhang, B. Lin, Z. Chen, K. Wolter, and G. Min, “Energy-efficient offloading for DNN-based smart IoT systems in cloud-edge environments,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 3, pp. 683–697, Mar. 2021.
  8. Y. Huang, X. Qiao, J. Tang, P. Ren, L. Liu, C. Pu, and J. Chen, “An integrated cloud-edge-device adaptive deep learning service for cross-platform web,” IEEE Trans. Mobile Comput., vol. 22, no. 4, pp. 1950–1967, Oct. 2023.
  9. L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand cooperative deep neural network inference for edge intelligence on the industrial Internet of Things,” IEEE Netw., vol. 33, no. 5, pp. 96–103, Sept.-Oct. 2019.
  10. B. Han, V. Sciancalepore, Y. Xu, D. Feng, and H. D. Schotten, “Impatient queuing for intelligent task offloading in multiaccess edge computing,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 59–72, Jan. 2023.
  11. J. Yan, S. Bi, and Y.-J. A. Zhang, “Optimal model placement and online model splitting for device-edge co-inference,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8354–8367, Oct. 2022.
  12. J. Song, Z. Liu, X. Wang, C. Qiu, and X. Chen, “Adaptive and collaborative edge inference in task stream with latency constraint,” in Proc. IEEE Int. Conf. Commun. (ICC), 2021, pp. 1–6.
  13. L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-enabled 6G: Vision, architectural trends, and future directions,” IEEE Commun. Mag., vol. 60, no. 1, pp. 74–80, Jan. 2022.
  14. Y. Lu, S. Maharjan, and Y. Zhang, “Adaptive edge association for wireless digital twin networks in 6G,” IEEE Internet Things J., vol. 8, no. 22, pp. 16 219–16 230, Nov. 2021.
  15. H. Wang, Y. Wu, G. Min, and W. Miao, “A graph neural network-based digital twin for network slicing management,” IEEE Trans. Ind. Informat., vol. 18, no. 2, pp. 1367–1376, Feb. 2022.
  16. W. Sun, H. Zhang, R. Wang, and Y. Zhang, “Reducing offloading latency for digital twin edge networks in 6G,” IEEE Trans. Veh. Technol., vol. 69, no. 10, pp. 12 240–12 251, Oct. 2020.
  17. M. Li, J. Gao, L. Zhao, and X. Shen, “Deep reinforcement learning for collaborative edge computing in vehicular networks,” IEEE Trans. Cogn. Commun. Netw., vol. 6, no. 4, pp. 1122–1135, Dec. 2020.
  18. C. Zhou, W. Wu, H. He, P. Yang, F. Lyu, N. Cheng, and X. Shen, “Deep reinforcement learning for delay-oriented IoT task scheduling in SAGIN,” IEEE Trans. Wireless Commun., vol. 20, no. 2, pp. 911–925, Feb. 2021.
  19. Z. Lin, S. Bi, and Y.-J. A. Zhang, “Optimizing AI service placement and resource allocation in mobile edge intelligence systems,” IEEE Trans. Wireless Commun., vol. 20, no. 11, pp. 7257–7271, Nov. 2021.
  20. B. Yang, X. Cao, X. Li, Q. Zhang, and L. Qian, “Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIoT,” IEEE Internet Things J., vol. 7, no. 3, pp. 2169–2180, Mar. 2020.
  21. W. Fan, Z. Chen, Y. Su, F. Wu, B. Tang, and Y. Liu, “Accuracy-based task offloading and resource allocation for edge intelligence in IoT,” IEEE Wireless Commun. Lett., vol. 11, no. 2, pp. 371–375, Feb. 2022.
  22. W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-guaranteed collaborative DNN inference in industrial IoT via deep reinforcement learning,” IEEE Trans. Ind. Informat., vol. 17, no. 7, pp. 4988–4998, July 2020.
  23. M. Gao, R. Shen, L. Shi, W. Qi, J. Li, and Y. Li, “Task partitioning and offloading in DNN-task enabled mobile edge computing networks,” IEEE Trans. Mobile Comput., vol. 22, no. 4, pp. 2435–2445, Apr. 2023.
  24. X. Tang, X. Chen, L. Zeng, S. Yu, and L. Chen, “Joint multiuser DNN partitioning and computational resource allocation for collaborative edge intelligence,” IEEE Internet Things J., vol. 8, no. 12, pp. 9511–9522, June 2021.
  25. H. Liang, Q. Sang, C. Hu, D. Cheng, X. Zhou, D. Wang, W. Bao, and Y. Wang, “DNN surgery: Accelerating DNN inference on the edge through layer partitioning,” IEEE Trans. Cloud Comput., pp. 1–15, 2023, to be published, doi:10.1109/TCC.2023.3258982.
  26. W. Fan, Z. Chen, Z. Hao, Y. Su, F. Wu, B. Tang, and Y. Liu, “DNN deployment, task offloading, and resource allocation for joint task inference in IIoT,” IEEE Trans. Ind. Informat., vol. 19, no. 2, pp. 1634–1646, 2023.
  27. W. Shi, S. Zhou, Z. Niu, M. Jiang, and L. Geng, “Multiuser co-inference with batch processing capable edge server,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 286–300, 2023.
  28. S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast inference via early exiting from deep neural networks,” in Proc. 23rd Int. Conf. Pattern Recognit. (ICPR), 2016, pp. 2464–2469.
  29. X. Deng, J. Li, C. Ma, K. Wei, L. Shi, M. Ding, and W. Chen, “Low-latency federated learning with DNN partition in distributed industrial IoT networks,” IEEE J. Sel. Areas Commun., vol. 41, no. 3, pp. 755–775, Dec. 2023.
  30. C. Herrera, F. Krach, P. Ruyssen, and J. Teichmann, “Optimal stopping via randomized neural networks,” arXiv:2104.13669, 2021, Available: https://arxiv.org/abs/2104.13669.
  31. T. S. Ferguson, “Optimal stopping and applications,” Available: https://www.math.ucla.edu/~tom/Stopping/Contents.html.
  32. S. Becker, P. Cheridito, and A. Jentzen, “Deep optimal stopping,” J. Mach. Learn. Res., vol. 20, pp. 1–25, Apr. 2019.
  33. J. Tsitsiklis and B. Van Roy, “Regression methods for pricing complex american-style options,” IEEE Trans. Neural Netw., vol. 12, no. 4, pp. 694–703, July 2001.
  34. Z. Wu, J. Wen, Y. Xu, J. Yang, X. Li, and D. Zhang, “Enhanced spatial feature learning for weakly supervised object detection,” IEEE Trans. Neural Netw. Learn. Syst., pp. 1–12, 2022, to be published, doi:10.1109/TNNLS.2022.3178180.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Shisheng Hu (13 papers)
  2. Mushu Li (27 papers)
  3. Jie Gao (185 papers)
  4. Conghao Zhou (37 papers)
  5. Xuemin Shen (74 papers)
Citations (12)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets