The torus plateau for the high-dimensional Ising model (2405.17353v2)
Abstract: We consider the Ising model on a $d$-dimensional discrete torus of volume $rd$, in dimensions $d>4$ and for large $r$, in the vicinity of the infinite-volume critical point $\beta_c$. We prove that for $\beta=\beta_c- {\rm const}\, r{-d/2}$ (with a suitable constant) the susceptibility is bounded above and below by multiples of $r{d/2}$. Additionally, again for $\beta=\beta_c- {\rm const}\, r{-d/2}$, the two-point function has a ``plateau'': it decays like $|x|{-(d-2)}$ when $|x|$ is small relative to the volume, but for larger $|x|$, it levels off to a constant value of order $r{-d/2}$. We also prove that at $\beta=\beta_c- {\rm const}\, r{-d/2}$ the renormalised coupling constant is nonzero, which implies a non-Gaussian limit for the average spin. The proof relies on near-critical estimates for the infinite-volume two-point function obtained recently by Duminil-Copin and Panis, and builds upon a strategy proposed by Papathanakos. The random current representation of the Ising model plays a central role in our analysis.
- A. Aharony. Universal critical amplitude ratios for percolation. Phys. Rev. B, 22:400–414, (1980).
- M. Aizenman. Geometric analysis of φ4superscript𝜑4\varphi^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT fields and Ising models, Parts I and II. Commun. Math. Phys., 86:1–48, (1982).
- M. Aizenman. On the number of incipient spanning clusters. Nucl. Phys. B [FS], 485:551–582, (1997).
- M. Aizenman and H. Duminil-Copin. Marginal triviality of the scaling limits of critical 4D4𝐷4{D}4 italic_D Ising and λϕ44𝜆superscriptsubscriptitalic-ϕ44\lambda\phi_{4}^{4}italic_λ italic_ϕ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT models. Ann. Math., 194:163–235, (2021).
- Emergent planarity in two-dimensional Ising models with finite-range interactions. Invent. Math., 216:661–743, (2019).
- M. Aizenman and R. Fernández. On the critical behavior of the magnetization in high dimensional Ising models. J. Stat. Phys., 44:393–454, (1986).
- M. Aizenman and R. Graham. On the renormalized coupling constant and the susceptibility in ϕ44superscriptsubscriptitalic-ϕ44\phi_{4}^{4}italic_ϕ start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT field theory and the Ising model in four dimensions. Nucl. Phys., B225 [FS9]:261–288, (1983).
- M. Aizenman and C.M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Stat. Phys., 36:107–143, (1984).
- D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab., 25:812–854, (1997).
- I. Benjamini and O. Schramm. Percolation beyond Zdsuperscript𝑍𝑑{Z}^{d}italic_Z start_POSTSUPERSCRIPT italic_d end_POSTSUPERSCRIPT, many questions and a few answers. Electron. Commun. Probab., 1:71–82, (1996).
- Phase transitions above the upper critical dimension. SciPost Phys. Lect. Notes, 136:paper 60, (2022).
- E. Brézin and J. Zinn-Justin. Finite size effects in phase transitions. Nucl. Phys. B [FS], 257:867–893, (1985).
- The effect of free boundary conditions on the Ising model in high dimensions. Probab. Theory Related Fields, 181:311–328, (2021).
- Unwrapped two-point functions on high-dimensional tori. J. Stat. Mech: Theory Exp., 053208, (2022).
- Two-point functions of random-length random walk on high-dimensional boxes. J. Stat. Mech: Theory Exp., 023203, (2024).
- H. Duminil-Copin. Lectures on the Ising and Potts models on the hypercubic lattice. In M.T. Barlow and G. Slade, editors, Random Graphs, Phase Transitions, and the Gaussian Free Field, pages 35–161, (2020). Springer Proceedings in Mathematics and Statistics, Volume 304.
- H. Duminil-Copin and R. Panis. New lower bounds for the (near) critical Ising and φ4superscript𝜑4\varphi^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT models’ two-point functions. Preprint, https://arxiv.org/pdf/2404.05700.pdf, (2024).
- P. Eichelsbacher and M. Löwe. Stein’s method for dependent random variables occurring in statistical mechanics. Electron. J. Probab., 15:962–988, (2010).
- Random Walks, Critical Phenomena, and Triviality in Quantum Field Theory. Springer, Berlin, (1992).
- J. Fröhlich. On the triviality of φd4superscriptsubscript𝜑𝑑4\varphi_{d}^{4}italic_φ start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT theories and the approach to the critical point in d≥4𝑑4d\geq 4italic_d ≥ 4 dimensions. Nucl. Phys., B200 [FS4]:281–296, (1982).
- Concavity of magnetization of an Ising ferromagnet in a positive external field. J. Math. Phys., 11:790–795, (1970).
- G. Grimmett. Percolation. Springer, Berlin, 2nd edition, (1999).
- Critical two-point functions and the lace expansion for spread-out high-dimensional percolation and related models. Ann. Probab., 31:349–408, (2003).
- T. Hara and G. Slade. Mean-field critical behaviour for percolation in high dimensions. Commun. Math. Phys., 128:333–391, (1990).
- M. Heydenreich and R. van der Hofstad. Random graph asymptotics on high-dimensional tori II: volume, diameter and mixing time. Probab. Theory Related Fields, 149:397–415, (2011). Correction: Probab. Theory Related Fields, 175:1183–1185, (2019).
- M. Heydenreich and R. van der Hofstad. Progress in High-Dimensional Percolation and Random Graphs. Springer International Publishing Switzerland, (2017).
- R. van der Hofstad and A. Sapozhnikov. Cycle structure of percolation on high-dimensional tori. Ann. Inst. H. Poincaré Probab. Statist., 50:999–1027, (2014).
- High-dimensional near-critical percolation and the torus plateau. Ann. Probab., 51:580–625, (2023).
- S. Janson and J. Spencer. A point process describing the component sizes in the critical window of the random graph evolution. Combin. Probab. Comput., 16:631–658, (2007).
- Y. Liu. A general approach to massive upper bound for two-point function with application to self-avoiding walk torus plateau. Preprint, https://arxiv.org/pdf/2310.17321.pdf, (2024).
- E. Luijten and H.W.J. Blöte. Classical critical behavior of spin models with long-range interactions. Phys. Rev. B, 56:8945–8958, (1997).
- P.H. Lundow and K. Markström. The scaling window of the 5555D Ising model with free boundary conditions. Nucl. Phys. B, 911:163–172, (2016).
- Boundary conditions and universal finite-size scaling for the hierarchical |φ|4superscript𝜑4|\varphi|^{4}| italic_φ | start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT model in dimensions 4444 and higher. Preprint, https://arxiv.org/abs/2306.00896, (2023).
- E. Michta and G. Slade. Weakly self-avoiding walk on a high-dimensional torus. Probab. Math. Phys., 4:331–375, (2023).
- R. Panis. Triviality of the scaling limits of critical Ising and φ4superscript𝜑4\varphi^{4}italic_φ start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT models with effective dimension at least four. Preprint, https://arxiv.org/pdf/2309.05797.pdf, (2023).
- V. Papathanakos. Finite-Size Effects in High-Dimensional Statistical Mechanical Systems: The Ising Model with Periodic Boundary Conditions. PhD thesis, Princeton University, (2006).
- J. Park and G. Slade. Boundary conditions and the two-point function plateau for the hierarchical |φ|4superscript𝜑4|\varphi|^{4}| italic_φ | start_POSTSUPERSCRIPT 4 end_POSTSUPERSCRIPT model in dimensions 4444 and higher. Preprint, (2024).
- J.J. Ruiz-Lorenzo. Logarithmic corrections for spin glasses, percolation and Lee–Yang singularities in six dimensions. J. Phys. A: Math. Gen., 31:8773–8787, (1998).
- A. Sakai. Lace expansion for the Ising model. Commun. Math. Phys., 272:283–344, (2007). Correction: A. Sakai. Correct bounds on the Ising lace-expansion coefficients. Commun. Math. Phys., 392:783–823, (2022).
- G. Slade. The near-critical two-point function and the torus plateau for weakly self-avoiding walk in high dimensions. Math. Phys. Anal. Geom., 26:article 6, (2023).
- M. Wittmann and A.P. Young. Finite-size scaling above the upper critical dimension. Phys. Rev. E, 90:062137, (2014).
- Random-length random walks and finite-size scaling in high dimensions. Phys. Rev. Lett., 121:185701, (2018).
- J. Zinn-Justin. Quantum Field Theory and Critical Phenomena. Oxford University Press, Oxford, 5th edition, (2021).