Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Partitioning Complete Geometric Graphs on Dense Point Sets into Plane Subgraphs (2405.17172v2)

Published 27 May 2024 in math.CO and cs.DM

Abstract: A \emph{complete geometric graph} consists of a set $P$ of $n$ points in the plane, in general position, and all segments (edges) connecting them. It is a well known question of Bose, Hurtado, Rivera-Campo, and Wood, whether there exists a positive constant $c<1$, such that every complete geometric graph on $n$ points can be partitioned into at most $cn$ plane graphs (that is, noncrossing subgraphs). We answer this question in the affirmative in the special case where the underlying point set $P$ is \emph{dense}, which means that the ratio between the maximum and the minimum distances in $P$ is of the order of $\Theta(\sqrt{n})$.

Summary

We haven't generated a summary for this paper yet.