Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Learning-based Joint Channel Prediction and Multibeam Precoding for LEO Satellite Internet of Things (2405.17150v1)

Published 27 May 2024 in cs.IT, eess.SP, and math.IT

Abstract: Low earth orbit (LEO) satellite internet of things (IoT) is a promising way achieving global Internet of Everything, and thus has been widely recognized as an important component of sixth-generation (6G) wireless networks. Yet, due to high-speed movement of the LEO satellite, it is challenging to acquire timely channel state information (CSI) and design effective multibeam precoding for various IoT applications. To this end, this paper provides a deep learning (DL)-based joint channel prediction and multibeam precoding scheme under adverse environments, e.g., high Doppler shift, long propagation delay, and low satellite payload. {Specifically, this paper first designs a DL-based channel prediction scheme by using convolutional neural networks (CNN) and long short term memory (LSTM), which predicts the CSI of current time slot according to that of previous time slots. With the predicted CSI, this paper designs a DL-based robust multibeam precoding scheme by using a channel augmentation method based on variational auto-encoder (VAE).} Finally, extensive simulation results confirm the effectiveness and robustness of the proposed scheme in LEO satellite IoT.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. M. Ying and X. Chen, “Channel prediction-based robust multibeam precoding design for LEO satellite internet of things,” in Proc. IEEE/CIC Int. Conf. Commun. China, Dalian, China, Aug. 2023, pp. 1-6.
  2. R. T. Schwarz, T. Delamotte, K.-U. Storek, and A. Knopp, “MIMO applications for multibeam satellites,” IEEE Trans. Broadcast., vol. 65, no. 4, pp. 664-681, Dec. 2019.
  3. M. A. Vázquez, A. Pérez-Neira, D. Christopoulos, S. Chatzinotas, B. Ottersten, P.-D. Arapoglou, A. Ginesi, and G. Tarocco, “Precoding in multibeam satellite communications: Present and future challenges,” IEEE Wireless Commun., vol. 23, no. 6, pp. 88-95, Dec. 2016.
  4. T. Yoo, G. J. Foschini, R. A. Valenzuela, and A. J. Goldsmith, “Common rate support in multi-antenna downlink channels using semi-orthogonal user selection,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp. 3449-3461, Jun. 2011.
  5. D. Christopoulos, S. Chatzinotas, G. Zheng, J. Grotz, and B. Ottersten, “Linear and nonlinear techniques for multibeam joint processing in satellite communications,” EURASIP J. Wireless Commun. Netw., vol. 2012, no. 1, pp. 1-13, 2012.
  6. J. Arnau, B. Devillers, C. Mosquera, and A. Pérez-Neira, “Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures,” EURASIP J. Wireless Commun. Netw., vol. 2012, no. 1, pp. 1-19, Apr. 2012.
  7. G. Zheng, S. Chatzinotas, and B. Ottersten, “Generic optimization of linear precoding in multibeam satellite systems,” IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 2308-2320, June 2012.
  8. D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Multicast multigroup precoding and user scheduling for frame-based satellite communications,” IEEE Trans. Wireless Commun., vol. 14, no. 9, pp. 4695-4707, Sep. 2015.
  9. J. Chu, X. Chen, C. Zhong, and Z. Zhang, “Robust design for NOMA-based multibeam LEO satellite Internet of Things,” IEEE Internet Things J., vol. 8, no. 3, pp. 1959-1970, Feb. 2021.
  10. J. Chu and X. Chen, “Robust design for integrated satellite-terrestrial Internet of Things,” IEEE Internet Things J., vol. 8, no. 11, pp. 9072-9083, Jun. 2021.
  11. L. You, K.-X. Li, J. Wang, X. Q. Gao, X.-G. Xia, and B. Ottersten, “Massive MIMO transmission for LEO satellite communications,” IEEE J. Sel. Areas Commun., vol. 38, no. 8, pp. 1851-1865, Aug. 2020.
  12. K.-X. Li, L. You, J. Wang, X. Gao, and S. Chatzinotas, “Downlink transmit design for massive MIMO LEO satellite communications,” IEEE Trans. Commun., vol. 70, no. 2, pp. 1014-1028, Feb. 2022.
  13. J. Yuan, H. Q. Ngo, and M. Matthaiou, “Machine learning-based channel prediction in massive MIMO with channel aging,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 2960-2973, May 2020.
  14. Y. Zhang, Y. Wu, A. Liu, X. Xia, T. Pan, and X. Liu, “Deep learning-based channel prediction for LEO satellite massive MIMO communication system,” IEEE Wireless Commun. Lett., vol. 10, no. 8, pp. 1835-1839, Aug. 2021.
  15. Y. Yang, F. Gao, C. Xing, J. An, and A. Alkhateeb, “Deep multimodal learning: Merging sensory data for massive MIMO channel prediction,” IEEE J. Sel. Areas Commun., vol. 39, no. 7, pp. 1885-1898, Jul. 2021.
  16. Y. Zhang, A. Liu, P. Li, and S. Jiang, “Deep learning (DL)- based channel prediction and hybrid beamforming for LEO satellite massive MIMO system,” IEEE Internet Things J., vol. 9, no. 23, pp. 23705-23715, Dec. 2022.
  17. H. Huang, Y. Song, J. Yang, G. Gui, and F. Adachi, “Deep-learning based millimeter-wave massive MIMO for hybrid precoding,” IEEE Trans. Veh. Technol., vol. 68, no. 3, pp. 3027-3032, Mar. 2019.
  18. J. Pauls and M. Vaezi, “Secure precoding in MIMO-NOMA: A deep learning approach,” IEEE Wireless Commun. Lett., vol. 11, no. 1, pp. 77-80, Jan. 2022.
  19. W. Ma, C. Qi, Z. Zhang, and J. Cheng, “Sparse channel estimation and hybrid precoding using deep learning for millimeter wave massive MIMO,” IEEE Trans. Commun., vol. 68, no. 5, pp. 2838-2849, Jan. 2020.
  20. M. You, G. Zheng, and H. Sun, “A data augmentation based DNN approach for outage-constrained robust beamforming,” in Proc. IEEE Int. Conf. Commun. (ICC), Montreal, QC, Canada, Jun. 2021, pp. 1-5.
  21. E. T. Michailidis, P. Theofilakos, and A. G. Kanatas, “Three-dimensional modeling and simulation of MIMO mobile-to-mobile via stratospheric relay fading channels,” IEEE Trans. Veh. Technol., vol. 62, no. 5, pp. 2014-2030, Jun. 2013.
  22. M. Ying, X. Chen, and X. Shao, “Exploiting tensor-based bayesian learning for massive grant-free random access in LEO satellite Internet of Things,” IEEE Trans. Commun., vol. 7, no.5, pp. 1141-1152, Feb. 2023.
  23. I. Ali, N. Al-Dhahir, and J. E. Hershey, “Doppler characterization for LEO satellites”, IEEE Trans. Commun., vol. 46, no. 3, pp. 309-313, Mar. 1998.
  24. Diederik P Kingma and Max Welling. 2013. “Auto-encoding variational bayes”. arXiv preprint arXiv:1312.6114 (2013).
  25. X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural networks,” in Proc. 13th Int. Conf. Artif. Intell. Statist., 2010, pp. 249-256.
  26. D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2015.
  27. J. Huang, Y. Yang, L. Yin, D. He, and Q. Yan, “Deep reinforcement learning-based power allocation for rate-splitting multiple access in 6G LEO satellite communication system,” IEEE Wireless Commun. Lett., vol. 11, no. 10, pp. 2185-2189, Oct. 2022.
  28. W. Jiang, M. Strufe, and H. D. Schotten, “Long-range MIMO channel prediction using recurrent neural networks,” in Proc. IEEE 17th Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2020, pp. 1-6.
  29. H. Yiling and H. Shaofeng, “A short-term load forecasting model based on improved random forest algorithm,” in Proc. 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 2020, pp.928-931.
  30. Silvirianti and S. Y. Shin, “Sub-connected hybrid precoding and trajectory optimization using deep reinforcement learning for energy-efficient millimeter-wave UAV communications”, IEEE Wireless Commun. Lett., vol. 12, no. 9, pp. 1642-1646, Sept. 2023.
  31. K.-Y. Wang, A. M.-C. So, T.-H. Chang, W.-K. Ma, and C.-Y. Chi, “Outage constrained robust transmit optimization for multiuser MISO downlinks: Tractable approximations by conic optimization,” IEEE Trans. Signal Process., vol. 62, no. 21, pp. 5690-5705, Nov. 2014.
  32. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436-1449, Apr. 2013.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ming Ying (3 papers)
  2. Xiaoming Chen (141 papers)
  3. Qiao Qi (7 papers)
  4. Wolfgang Gerstacker (21 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.