Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Your decision path does matter in pre-training industrial recommenders with multi-source behaviors (2405.17132v1)

Published 27 May 2024 in cs.LG

Abstract: Online service platforms offering a wide range of services through miniapps have become crucial for users who visit these platforms with clear intentions to find services they are interested in. Aiming at effective content delivery, cross-domain recommendation are introduced to learn high-quality representations by transferring behaviors from data-rich scenarios. However, these methods overlook the impact of the decision path that users take when conduct behaviors, that is, users ultimately exhibit different behaviors based on various intents. To this end, we propose HIER, a novel Hierarchical decIsion path Enhanced Representation learning for cross-domain recommendation. With the help of graph neural networks for high-order topological information of the knowledge graph between multi-source behaviors, we further adaptively learn decision paths through well-designed exemplar-level and information bottleneck based contrastive learning. Extensive experiments in online and offline environments show the superiority of HIER.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com