Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Holographic MIMO Systems, Their Channel Estimation and Performance (2405.17114v1)

Published 27 May 2024 in cs.IT, eess.SP, and math.IT

Abstract: Holographic multiple-input multiple-output (MIMO) systems constitute a promising technology in support of next-generation wireless communications, thus paving the way for a smart programmable radio environment. However, despite its significant potential, further fundamental issues remain to be addressed, such as the acquisition of accurate channel information. Indeed, the conventional angular-domain channel representation is no longer adequate for characterizing the sparsity inherent in holographic MIMO channels. To fill this knowledge gap, in this article, we conceive a decomposition and reconstruction (DeRe)-based framework for facilitating the estimation of sparse channels in holographic MIMOs. In particular, the channel parameters involved in the steering vector, namely the azimuth and elevation angles plus the distance (AED), are decomposed for independently constructing their own covariance matrices. Then, the acquisition of each parameter can be formulated as a compressive sensing (CS) problem by harnessing the covariance matrix associated with each individual parameter. We demonstrate that our solution exhibits an improved performance and imposes a reduced pilot overhead, despite its reduced complexity. Finally, promising open research topics are highlighted to bridge the gap between the theory and the practical employment of holographic MIMO schemes.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (15)
  1. C. Huang, S. Hu, G. C. Alexandropoulos, A. Zappone, C. Yuen, R. Zhang, M. D. Renzo, and M. Debbah, “Holographic MIMO surfaces for 6G wireless networks: Opportunities, challenges, and trends,” IEEE Wireless Commun., vol. 27, no. 5, pp. 118–125, Oct. 2020.
  2. R. Deng, B. Di, H. Zhang, D. Niyato, Z. Han, H. V. Poor, and L. Song, “Reconfigurable holographic surfaces for future wireless communications,” IEEE Wireless Commun., vol. 28, no. 6, pp. 126–131, Dec. 2021.
  3. Y. Chen, Y. Wang, J. Zhang, P. Zhang, and L. Hanzo, “Reconfigurable intelligent surface (RIS)-aided vehicular networks: Their protocols, resource allocation, and performance,” IEEE Veh. Technol. Mag., vol. 17, no. 2, pp. 26–36, Jun. 2022.
  4. T. Gong, P. Gavriilidis, R. Ji, C. Huang, G. C. Alexandropoulos, L. Wei, Z. Zhang, M. Debbah, H. V. Poor, and C. Yuen, “Holographic MIMO communications: Theoretical foundations, enabling technologies, and future directions,” IEEE Commun. Surv. Tutor., vol. 26, no. 1, pp. 196–257, First-quater, 2024.
  5. A. Pizzo, L. Sanguinetti, and T. L. Marzetta, “Fourier plane-wave series expansion for holographic MIMO communications,” IEEE Trans. Wireless Commun., vol. 21, no. 9, pp. 6890–6905, Sep. 2022.
  6. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Channel modeling and channel estimation for holographic massive MIMO with planar arrays,” IEEE Wireless Commun. Lett., vol. 11, no. 5, pp. 997–1001, May 2022.
  7. R. Deng, B. Di, H. Zhang, and L. Song, “HDMA: Holographic-pattern division multiple access,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1317–1332, Apr. 2022.
  8. E. D. Carvalho, A. Ali, A. Amiri, M. Angjelichinoski, and R. W. Heath, “Non-stationarities in extra-large-scale massive MIMO,” IEEE Wireless Commun., vol. 27, no. 4, pp. 74–80, Aug. 2020.
  9. J. Sherman, “Properties of focused apertures in the Fresnel region,” IRE Trans. Anntenas Propag., vol. 10, no. 4, pp. 399–408, Jul. 1962.
  10. M. Cui and L. Dai, “Channel estimation for extremely large-scale MIMO: Far-field or near-field?” IEEE Trans. Commun., vol. 70, no. 4, pp. 2663–2677, Apr. 2022.
  11. A. Liu, G. Liu, L. Lian, V. K. N. Lau, and M.-J. Zhao, “Robust recovery of structured sparse signals with uncertain sensing matrix: A turbo-VBI approach,” IEEE Trans. Wireless Commun., vol. 19, no. 5, pp. 3185–3198, May 2020.
  12. M. F. Duarte and Y. C. Eldar, “Structured compressed sensing: From theory to applications,” IEEE Trans. Signal Process., vol. 59, no. 9, pp. 4053–4085, Sep. 2011.
  13. Y. Chen, Y. Wang, and Z. Wang, “Reconfigurable intelligent surface aided high-mobility millimeter wave communications with dynamic dual-structured sparsity,” IEEE Trans. Wireless Commun., vol. 22, no. 7, pp. 4580–4599, Jul. 2023.
  14. Y. Chen, Y. Wang, X. Guo, Z. Han, and P. Zhang, “Location tracking for reconfigurable intelligent surfaces aided vehicle platoons: Diverse sparsities inspired approaches,” IEEE J. Sel. Areas Commun., vol. 41, no. 8, pp. 2476–2496, Aug. 2023.
  15. “Study on artificial intelligence (AI)/machine learning (ML) for NR air interface (release 18),” 3rd Generation Partnership Project, Tech. Rep. 3GPP TR 38.843 V18.0.0, Dec. 2023.

Summary

We haven't generated a summary for this paper yet.