Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Projective modules over Rees-like algebras and its monoid extensions (2405.17096v2)

Published 27 May 2024 in math.AC

Abstract: Let $A$ be a Rees-like algebra of dimension $d$ and $N$ a commutative partially cancellative torsion-free seminormal monoid. We prove the following results. \begin{enumerate} \item Let $P$ be a finitely generated projective $A$-module of $\rank\geq d$. Then $(i)$ $P$ has a unimodular element; $(ii)$ The action of $\EL(A\oplus P)$ on $\Um(A\oplus P)$ is transitive. \item Let $P$ be a finitely generated projective $A[N]$-module of $\rank~r$. Then $(i)$ $P$ has a unimodular element for $r\geq\max{3,d}$; $(ii)$ The action of $\EL(A[N]\oplus P)$ on $\Um(A[N]\oplus P)$ is transitive for $r\geq\max{2,d}$. \end{enumerate} These improve the classical results of Serre \cite{Se58} and Bass \cite{Ba64}.

Summary

We haven't generated a summary for this paper yet.