Positivity preserving finite element method for the Gross-Pitaevskii ground state: discrete uniqueness and global convergence (2405.17090v1)
Abstract: We propose a positivity preserving finite element discretization for the nonlinear Gross-Pitaevskii eigenvalue problem. The method employs mass lumping techniques, which allow to transfer the uniqueness up to sign and positivity properties of the continuous ground state to the discrete setting. We further prove that every non-negative discrete excited state up to sign coincides with the discrete ground state. This allows one to identify the limit of fully discretized gradient flows, which are typically used to compute the discrete ground state, and thereby establish their global convergence. Furthermore, we perform a rigorous a priori error analysis of the proposed non-standard finite element discretization, showing optimal orders of convergence for all unknowns. Numerical experiments illustrate the theoretical results of this paper.
- Quantitative Anderson localization of Schrödinger eigenstates under disorder potentials. Math. Models Methods Appl. Sci., 30(5):917–955, 2020.
- The J𝐽Jitalic_J-method for the Gross–Pitaevskii eigenvalue problem. Numer. Math., 148:575–610, 2021.
- Localization and delocalization of ground states of Bose-Einstein condensates under disorder. SIAM J. Appl. Math., 82(1):330–358, 2022.
- Some results in lumped mass finite-element approximation of eigenvalue problems using numerical quadrature formulas. J. Comput. Appl. Math., 43(3):291–311, 1992.
- Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods. J. Comput. Phys., 343:92–109, 2017.
- Energy-adaptive Riemannian optimization on the Stiefel manifold. ESAIM Math. Model. Numer. Anal. (M2AN), 56(5):1629 – 1653, 2022.
- Riemannian newton methods for energy minimization problems of Kohn-Sham type. ArXiv e-print 2307.13820, 2023.
- Localization studies for ground states of the Gross–Pitaevskii equation. PAMM, 18(1):e201800343, 2018.
- W. Bao and Y. Cai. Mathematical theory and numerical methods for Bose-Einstein condensation. Kinet. Relat. Models, 6(1):1–135, 2013.
- W. Bao and Q. Du. Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput., 25(5):1674–1697, 2004.
- L. Brasco and G. Franzina. Convexity properties of Dirichlet integrals and Picone-type inequalities. Kodai Math. J., 37(3), 2014.
- Finite element methods respecting the discrete maximum principle for convection-diffusion equations. SIAM Review, 66(1):3–88, 2024.
- Simplicial Partitions with Applications to the Finite Element Method. Springer International Publishing, 2020.
- E. Cancès. SCF algorithms for HF electronic calculations. In Mathematical models and methods for ab initio quantum chemistry, volume 74 of Lecture Notes in Chem., pages 17–43. Springer, Berlin, 2000.
- Numerical analysis of nonlinear eigenvalue problems. J. Sci. Comput., 45(1-3):90–117, 2010.
- Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comp. Meth. Appl. Mech. Eng., 200(21-22):1846–1865, 2011.
- Fully discretized Sobolev gradient flow for the Gross-Pitaevskii eigenvalue problem. ArXiv e-print 2403.06028, 2024.
- C. M. Dion and E. Cancès. Ground state of the time-independent Gross–Pitaevskii equation. Comput. Phys. Comm., 177(10):787–798, 2007.
- I. Danaila and F. Hecht. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates. J. Comput. Phys., 229(19):6946–6960, 2010.
- I. Danaila and P. Kazemi. A new Sobolev gradient method for direct minimization of the Gross-Pitaevskii energy with rotation. SIAM J. Sci. Comput., 32(5):2447–2467, 2010.
- I. Danaila and B. Protas. Computation of ground states of the Gross–Pitaevskii functional via Riemannian optimization. SIAM J. Sci. Comput., 39(6):B1102–B1129, 2017.
- L. C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
- Mixed finite elements for the Gross-Pitaevskii eigenvalue problem: a priori error analysis and guaranteed lower energy bound. ArXiv e-print 2402.06311, 2024.
- P. Henning. The dependency of spectral gaps on the convergence of the inverse iteration for a nonlinear eigenvector problem. Math. Models Methods Appl. Sci., 33(7):1517–1544, 2023.
- P. Henning and E. Jarlebring. The Gross–Pitaevskii equation and eigenvector nonlinearities: Numerical methods and algorithms. Preprint, to appear, 2024.
- Two-level discretization techniques for ground state computations of Bose-Einstein condensates. SIAM J. Numer. Anal., 52(4):1525–1550, 2014.
- P. Henning and D. Peterseim. Oversampling for the multiscale finite element method. Multiscale Model. Simul., 11(4):1149–1175, 2013.
- P. Henning and D. Peterseim. Sobolev gradient flow for the Gross–Pitaevskii eigenvalue problem: global convergence and computational efficiency. SIAM J. Numer. Anal., 58(3):1744–1772, 2020.
- M. Hauck and D. Peterseim. Super-localization of elliptic multiscale problems. Math. Comp., 92(341):981–1003, 2023.
- P. Henning and A. Persson. On optimal convergence rates for discrete minimizers of the Gross–Pitaevskii energy in LOD spaces. Multiscale Model. Simul., 21(3):993–1011, 2023.
- Gradient flow finite element discretizations with energy-based adaptivity for the Gross-Pitaevskii equation. J. Comput. Phys., 436:Paper No. 110165, 15, 2021.
- P. Henning and J. Wärnegård. Superconvergence of time invariants for the Gross-Pitaevskii equation. Math. Comp., 91(334):509–555, 2022.
- An inverse iteration method for eigenvalue problems with eigenvector nonlinearities. SIAM J. Sci. Comput., 36(4):A1978–A2001, 2014.
- P. Knabner and L. Angermann. Numerical Methods for Elliptic and Parabolic Partial Differential Equations. Texts in Applied Mathematics. Springer International Publishing, 2003.
- P. Kazemi and M. Eckart. Minimizing the Gross-Pitaevskii energy functional with the Sobolev gradient – analytical and numerical results. Int. J. Comput. Methods, 7(3):453–475, 2010.
- M. Křížek and J. Pradlová. Nonobtuse tetrahedral partitions. Numer. Methods Partial Differ. Equ., 16(3):327–334, 2000.
- Bosons in a trap: A rigorous derivation of the gross-pitaevskii energy functional. Phys. Rev. A, 61:043602, 2000.
- A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583–2603, 2014.
- A. Målqvist and D. Peterseim. Numerical Homogenization by Localized Orthogonal Decomposition, volume 5 of SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2020.
- R.J. Plemmons. M-matrix characterizations.i—nonsingular m-matrices. Linear Algebra Appl., 18(2):175–188, 1977.
- Super-localised wave function approximation of Bose-Einstein condensates. J. Comput. Phys., 510:113097, 2024.
- Energy minimization related to the nonlinear Schrödinger equation. J. Comput. Phys., 228(7):2572–2577, 2009.
- J. Xu and L. Zikatanov. A monotone finite element scheme for convection-diffusion equations. Math. Comp., 68(228):1429–1446, 1999.
- Z. Zhang. Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems. Commun. Math. Sci., 20(2):377–403, 2022.
- A. Zhou. An analysis of finite-dimensional approximations for the ground state solution of Bose-Einstein condensates. Nonlinearity, 17(2):541–550, 2004.