Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A diagrammatic computation of abelian link invariants (2405.17011v2)

Published 27 May 2024 in math.GT

Abstract: We show how the multivariable signature and Alexander polynomial of a colored link can be computed from a single symmetric matrix naturally defined from a colored link diagram. In the case of a single variable, it coincides with the matrix introduced by Kashaev in [arXiv:1801.04632], which was recently proven to compute the Levine-Tristram signature and the Alexander polynomial of oriented links [arXiv:2311.01923, arXiv:2310.16729]. As a corollary, we obtain a multivariable extension of Kauffman's determinantal model of the Alexander polynomial, recovering a result of Zibrowius [arXiv:1601.04915v1].

Definition Search Book Streamline Icon: https://streamlinehq.com
References (19)
  1. James W. Alexander. Topological invariants of knots and links. Trans. Amer. Math. Soc., 30(2):275–306, 1928.
  2. David Cimasoni. A geometric construction of the Conway potential function. Comment. Math. Helv., 79(1):124–146, 2004.
  3. On the Kashaev signature conjecture. Fund. Math., in press.
  4. Generalized Seifert surfaces and signatures of colored links. Trans. Amer. Math. Soc., 360(3):1223–1264, 2008.
  5. Anthony Conway. The Levine-Tristram signature: a survey. In 2019–20 MATRIX annals, volume 4 of MATRIX Book Ser., pages 31–56. Springer, Cham, [2021] ©2021.
  6. Multivariable signatures, genus bounds, and 0.5-solvable cobordisms. Michigan Math. J., 69(2):381–427, 2020.
  7. John H. Conway. An enumeration of knots and links, and some of their algebraic properties. In Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967), pages 329–358. Pergamon, Oxford-New York-Toronto, Ont., 1970.
  8. Daryl Cooper. The universal abelian cover of a link. In Low-dimensional topology (Bangor, 1979), volume 48 of London Math. Soc. Lecture Note Ser., pages 51–66. Cambridge Univ. Press, Cambridge-New York, 1982.
  9. R. H. Crowell and D. Strauss. On the elementary ideals of link modules. Trans. Amer. Math. Soc., 142:93–109, 1969.
  10. Moves relating C-complexes: a correction to Cimasoni’s “A geometric construction of the Conway potential function”. Topology Appl., 302:Paper No. 107799, 16, 2021.
  11. An algorithm to calculate generalized Seifert matrices. J. Knot Theory Ramifications, 31(11):Paper No. 2250068, 23, 2022.
  12. Richard Hartley. The Conway potential function for links. Commentarii mathematici Helvetici, 58:365–378, 1983.
  13. Rinat Kashaev. On symmetric matrices associated with oriented link diagrams. In Topology and geometry—a collection of essays dedicated to Vladimir G. Turaev, volume 33 of IRMA Lect. Math. Theor. Phys., pages 131–145. Eur. Math. Soc., Zürich, 2021.
  14. Louis H. Kauffman. The Conway polynomial. Topology, 20(1):101–108, 1981.
  15. Louis H. Kauffman. Formal knot theory, volume 30 of Mathematical Notes. Princeton University Press, Princeton, NJ, 1983.
  16. Jessica Liu. A proof of the Kashaev signature conjecture, 2023.
  17. Masashi Sato. On the Conway potential function introduced by Kauffman, 2011.
  18. Claudius Zibrowius. Kauffman states and Heegaard diagrams for tangles, 2019.
  19. Claudius Bodo Zibrowius. Kauffman states and Heegaard diagrams for tangles. Algebr. Geom. Topol., 19(5):2233–2282, 2019.

Summary

We haven't generated a summary for this paper yet.