Bulk Reconstruction in De Sitter Spacetime (2405.16832v1)
Abstract: The bulk reconstruction program involves expressing local bulk fields as non-local operators on the boundary. It was initiated in the context of AdS/CFT correspondence. Attempts to extend it to de Sitter have been successful for heavy(principal series) scalar fields. For other fields, the construction ran into issues. In particular, divergences were found to appear for higher spin fields. In this paper, we resolve these issues and obtain boundary representations for scalars of all masses as well as higher spin fields. We trace the origin of the previously discovered divergences and show that the smearing function becomes distributional for certain values of mass, spin and dimension. We also extend the construction from Bunch-Davies vacuum to all $\alpha$-vacua.
- J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
- E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998), arXiv:hep-th/9802150 .
- V. K. Dobrev, Nucl. Phys. B 553, 559 (1999), arXiv:hep-th/9812194 .
- I. Bena, Phys. Rev. D 62, 066007 (2000), arXiv:hep-th/9905186 .
- I. Heemskerk, JHEP 09, 106 (2012), arXiv:1201.3666 [hep-th] .
- K. Papadodimas and S. Raju, JHEP 10, 212 (2013), arXiv:1211.6767 [hep-th] .
- S. Leichenauer and V. Rosenhaus, Phys. Rev. D 88, 026003 (2013), arXiv:1304.6821 [hep-th] .
- D. Sarkar and X. Xiao, Phys. Rev. D 91, 086004 (2015), arXiv:1411.4657 [hep-th] .
- D. Sarkar, Phys. Rev. D 90, 086005 (2014), arXiv:1408.0415 [hep-th] .
- M. Guica and S. F. Ross, Class. Quant. Grav. 32, 055014 (2015), arXiv:1412.1084 [hep-th] .
- S. R. Roy and D. Sarkar, Phys. Rev. D 92, 126003 (2015), arXiv:1505.03895 [hep-th] .
- D. Kabat and G. Lifschytz, JHEP 08, 097 (2016), arXiv:1601.05611 [hep-th] .
- D. Kabat and G. Lifschytz, JHEP 06, 120 (2017), arXiv:1703.06523 [hep-th] .
- D. Kabat and G. Lifschytz, JHEP 03, 151 (2018), arXiv:1801.08101 [hep-th] .
- N. Kajuri, Phys. Rev. D 103, 066019 (2021a), arXiv:2012.07151 [hep-th] .
- P. Dey and N. Kajuri, JHEP 09, 170 (2021), arXiv:2106.07304 [hep-th] .
- B. Bhattacharjee and J. Mukherjee, (2023), arXiv:2307.02710 [hep-th] .
- N. Kajuri, SciPost Phys. Lect. Notes 22, 1 (2021b), arXiv:2003.00587 [hep-th] .
- A. Strominger, JHEP 10, 034 (2001), arXiv:hep-th/0106113 .
- C. Sleight and M. Taronna, JHEP 02, 098 (2020), arXiv:1907.01143 [hep-th] .
- E. Pajer, JCAP 01, 023 (2021), arXiv:2010.12818 [hep-th] .
- X. Xiao, Phys. Rev. D 90, 024061 (2014), arXiv:1402.7080 [hep-th] .
- A. Chatterjee and D. A. Lowe, Phys. Rev. D 92, 084038 (2015), arXiv:1503.07482 [hep-th] .
- S. Bhowmick and K. Ray, JHEP 09, 126 (2018), arXiv:1805.07189 [hep-th] .
- I. A. Morrison, JHEP 05, 053 (2014), arXiv:1403.3426 [hep-th] .
- D. Harlow and D. Stanford, (2011), arXiv:1104.2621 [hep-th] .
- E. Mottola, Phys. Rev. D 31, 754 (1985).
- B. Allen, Phys. Rev. D 32, 3136 (1985).
- M. A. Vasiliev, Int. J. Mod. Phys. D 5, 763 (1996), arXiv:hep-th/9611024 .
- G. N. Watson, A treatise on the theory of Bessel functions, Vol. 2 (The University Press, 1922).
- S. Richard, Contemporary Mathematics 500, 159 (2009).
- N. Salamon and G. Walter, IMA Journal of Applied Mathematics 24, 237 (1979).
- R. N. Miroshin, Mathematical Notes 70, 682 (2001).
- J. Kellendonk and S. Richard, Integral Transforms and Special Functions 20, 147 (2009).
- M. Wrochna, arXiv preprint arXiv:1004.5518 (2010).