Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fractal behavior of tensor powers of the two dimensional space in prime characteristic (2405.16786v2)

Published 27 May 2024 in math.RT, math.CT, and math.RA

Abstract: We study the number of indecomposable summands in tensor powers of the vector representation of SL2. Our main focus is on positive characteristic where this sequence of numbers and its generating function show fractal behavior akin to Mahler functions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. H.H. Andersen. Cells in affine Weyl groups and tilting modules. In Representation theory of algebraic groups and quantum groups, volume 40 of Adv. Stud. Pure Math., pages 1–16. Math. Soc. Japan, Tokyo, 2004. doi:10.2969/aspm/04010001.
  2. H.H. Andersen. Simple modules for Temperley–Lieb algebras and related algebras. J. Algebra, 520:276–308, 2019. URL: https://arxiv.org/abs/1709.00248, doi:10.1016/j.jalgebra.2018.10.035.
  3. Cellular structures using UqsubscriptU𝑞\mathrm{U}_{q}roman_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT-tilting modules. Pacific J. Math., 292(1):21–59, 2018. URL: https://arxiv.org/abs/1503.00224, doi:10.2140/pjm.2018.292.21.
  4. J.P. Bell and M. Coons. Transcendence tests for Mahler functions. Proc. Amer. Math. Soc., 145(3):1061–1070, 2017. URL: https://arxiv.org/abs/1511.07530, doi:10.1090/proc/13297.
  5. P. Biane. Estimation asymptotique des multiplicités dans les puissances tensorielles d’un 𝔤𝔤\mathfrak{g}fraktur_g-module. C. R. Acad. Sci. Paris Sér. I Math., 316(8):849–852, 1993.
  6. Regular variation, volume 27 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1989.
  7. R.M. Bryant and L.G. Kovács. Tensor products of representations of finite groups. Bull. London Math. Soc., 4:133–135, 1972. doi:10.1112/blms/4.2.133.
  8. p-Jones–Wenzl idempotents. Adv. Math., 352(20):246–264, 2019. URL: https://arxiv.org/abs/1902.00305, doi:10.1016/j.aim.2019.06.005.
  9. M. Coons and J. Evans. A sequential view of self-similar measures; or, what the ghosts of Mahler and Cantor can teach us about dimension. J. Integer Seq., 24(2):Art. 21.2.5, 10, 2021. URL: https://arxiv.org/abs/2011.10722.
  10. Asymptotic properties of tensor powers in symmetric tensor categories. 2023. To appear in Pure Appl. Math. Q. URL: https://arxiv.org/abs/2301.09804.
  11. Code and more for the paper Fractal behavior of tensor powers of the two dimensional space in prime characteristic. 2024. https://github.com/dtubbenhauer/sl2-charp.
  12. Growth rates of the number of indecomposable summands in tensor powers. Algebr. Represent. Theory 27 (2024), no. 2, 1033–1062. URL: https://arxiv.org/abs/2301.00885.
  13. K. Coulembier and G. Williamson. Perfecting group schemes. Journal of the Institute of Mathematics of Jussieu, 2024. URL: https://arxiv.org/abs/2206.05867, doi:doi:10.1017/S1474748024000033.
  14. P. Deligne. Catégories tannakiennes. In The Grothendieck Festschrift, Vol. II, volume 87 of Progr. Math., pages 111–195. Birkhäuser Boston, Boston, MA, 1990.
  15. S. Donkin. On tilting modules for algebraic groups. Math. Z., 212(1):39–60, 1993. doi:10.1007/BF02571640.
  16. M. Dus. Weak version of Karamata’s Tauberian theorem. MathOverflow, 2020. Version: 2020-Mar-03; author’s MathOverflow link https://mathoverflow.net/users/111917/m-dus. URL: https://mathoverflow.net/q/353943.
  17. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015. doi:10.1090/surv/205.
  18. P. Flajolet and R. Sedgewick. Analytic combinatorics. Cambridge University Press, Cambridge, 2009. doi:10.1017/CBO9780511801655.
  19. W.J. Haboush. Central differential operators on split semisimple groups over fields of positive characteristic. Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, 32ème année (Paris, 1979), pp. 35–85, Lecture Notes in Math., 795, Springer, Berlin, 1980.
  20. Monoidal categories, representation gap and cryptography. Trans. Amer. Math. Soc. Ser. B, 11:329–395, 2024. URL: https://arxiv.org/abs/2201.01805, doi:10.1090/btran/151.
  21. Asymptotics in finite monoidal categories. Proc. Amer. Math. Soc. Ser. B, 10:398–412, 2023. URL: https://arxiv.org/abs/2307.03044, doi:10.1090/bproc/198.
  22. Asymptotics in infinite monoidal categories. 2024. URL: https://arxiv.org/abs/2404.09513.
  23. Tensor powers of vector representation of Uq⁢(s⁢l2)subscript𝑈𝑞𝑠subscript𝑙2U_{q}(sl_{2})italic_U start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT ( italic_s italic_l start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) at even roots of unity. 2024. URL: https://arxiv.org/abs/2404.03933.
  24. M. Larsen. Bounds for SL2-indecomposables in tensor powers of the natural representation in characteristic 2. In progress.
  25. G. Lusztig and G. Williamson. Billiards and tilting characters for SL3subscriptSL3\mathrm{SL}_{3}roman_SL start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 015, 22, 2018. URL: https://arxiv.org/abs/1703.05898, doi:10.3842/SIGMA.2018.015.
  26. M. Mishna. Analytic combinatorics: a multidimensional approach. Discrete Mathematics and its Applications (Boca Raton). CRC Press, Boca Raton, FL, [2020] ©2020.
  27. K. Nishioka. Mahler functions and transcendence, volume 1631 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1996. doi:10.1007/BFb0093672.
  28. OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at http://oeis.org.
  29. D.S. Passman and D. Quinn. Burnside’s theorem for Hopf algebras. Proc. Amer. Math. Soc., 123(2):327–333, 1995. doi:10.2307/2160884.
  30. C.M. Ringel. The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z., 208(2):209–223, 1991. doi:10.1007/BF02571521.
  31. R.A. Spencer. The modular Temperley–Lieb algebra. Rocky Mountain J. Math., 53(1):177–208, 2023. URL: https://arxiv.org/abs/2011.01328, doi:10.1216/rmj.2023.53.177.
  32. E.C. Titchmarsh. The theory of functions. Oxford University Press, Oxford, 1958. Reprint of the second (1939) edition.
  33. D. Tubbenhauer and P. Wedrich. Quivers for SL2subscriptSL2\mathrm{SL}_{2}roman_SL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT tilting modules. Represent. Theory, 25:440–480, 2021. URL: https://arxiv.org/abs/1907.11560, doi:10.1090/ert/569.
  34. SL2 tilting modules in the mixed case. Selecta Math. (N.S.), 29(3):39, 2023. URL: https://arxiv.org/abs/2105.07724, doi:10.1007/s00029-023-00835-0.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com