Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The second-order zero differential uniformity of the swapped inverse functions over finite fields (2405.16784v2)

Published 27 May 2024 in cs.IT, cs.CR, and math.IT

Abstract: The Feistel Boomerang Connectivity Table (FBCT) was proposed as the feistel counterpart of the Boomerang Connectivity Table. The entries of the FBCT are actually related to the second-order zero differential spectrum. Recently, several results on the second-order zero differential uniformity of some functions were introduced. However, almost all of them were focused on power functions, and there are only few results on non-power functions. In this paper, we investigate the second-order zero differential uniformity of the swapped inverse functions, which are functions obtained from swapping two points in the inverse function. We also present the second-order zero differential spectrum of the swapped inverse functions for certain cases. In particular, this paper is the first result to characterize classes of non-power functions with the second-order zero differential uniformity equal to 4, in even characteristic.

Summary

We haven't generated a summary for this paper yet.