Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Conjunctive categorial grammars and Lambek grammars with additives (2405.16662v1)

Published 26 May 2024 in cs.LO, cs.CL, and math.LO

Abstract: A new family of categorial grammars is proposed, defined by enriching basic categorial grammars with a conjunction operation. It is proved that the formalism obtained in this way has the same expressive power as conjunctive grammars, that is, context-free grammars enhanced with conjunction. It is also shown that categorial grammars with conjunction can be naturally embedded into the Lambek calculus with conjunction and disjunction operations. This further implies that a certain NP-complete set can be defined in the Lambek calculus with conjunction. We also show how to handle some subtle issues connected with the empty string. Finally, we prove that a language generated by a conjunctive grammar can be described by a Lambek grammar with disjunction (but without conjunction).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (43)
  1. V. M. Abrusci. “A comparison between Lambek syntactic calculus and intuitionistic linear propositional logic”, Zeitschr. für math. Logik und Grundl. der Math., 36, 1990. pp. 11–15.
  2. K. Ajdukiewicz. “Die syntaktische Konnexität”, Studia Philosophica, 1, 1935. pp. 1–27.
  3. Y. Bar-Hillel, “A quasi-arithmetical notation for syntactic description”, Language, 29:1 (1953), 47–58.
  4. Y. Bar-Hillel, C. Gaifman, E. Shamir. “On categorial and phrase-structure grammars”, Bull. Res. Council Israel Sect. F, 9F, 1960. pp. 1–16.
  5. W. Buszkowski. “The equivalence of unidirectional Lambek categorial grammars and context-free languages”, Zeitschr. für math. Logik und Grundl. der Math., 31, 1985. pp. 369–384.
  6. W. Buszkowski, “Categorial grammars with negative information”, in: H. Wansing (Ed.), Negation. A Notion in Focus, De Gruyter, 1996, pp. 107–126.
  7. W. Buszkowski. “On action logic: equational theories of action algebras”, J. Logic Comput., 17:1, 2007, 199–217.
  8. W. Buszkowski, M. Farulewski, “Nonassociative Lambek calculus with additives and context-free languages”, Languages: From Formal to Natural, Lect. Notes Comput. Sci., vol. 5533, Springer, 2009, pp. 45–58.
  9. B. Carpenter. Type-logical semantics. MIT Press, 1998.
  10. N. Chomsky. “Three models for the description of language”, IRE Transactions on Information Theory, 2, 1956. pp. 113–124.
  11. M. Dekhtyar, A. Dikovsky. “Generalized categorial dependency grammars”, Trakhtenbrot Festschrift, LNCS vol. 4800, Springer, 2008. pp. 230–255.
  12. M. J. Fischer, “Grammars with macro-like productions”, 9th Annual Symposium on Switching and Automata Theory (SWAT 1968, Schenectady, New York, USA, 15–18 October 1968), pp. 131–142.
  13. J.-Y. Girard. “Linear logic”, Theor. Comp. Sci. 50:1, 1987, pp. 1–102.
  14. M. Kanazawa, “The Lambek calculus enriched with additional connectives”, Journal of Logic, Language and Information, 1 (1992), 141–171.
  15. M. Kanovich, S. Kuznetsov, A. Scedrov. “The complexity of multiplicative-additive Lambek calculus: 25 years later”, WoLLIC 2019: Logic, Language, Information, and Computation, LNCS vol. 11541, Springer, 2019. pp. 356–372.
  16. M. Kanovich, S. Kuznetsov, V. Nigam, A. Scedrov, “Subexponentials in non-commutative linear logic”, Math. Struct. Comput. Sci., 29:8, 2019, 1217–1249.
  17. M. Kanovich, S. Kuznetsov, A. Scedrov, “Language models for some extensions of the Lambek calculus”, Inform. Comput., 287, 2022, 104760.
  18. M. Kozak, “Distributive full Lambek calculus has the finite model property”, Studia Logica, 91:2, 2009, 201–216.
  19. S. Kuznetsov. “Lambek grammars with one division and one primitive type”, Log. J. IGPL, 20:1, 2012, 207–221.
  20. S. Kuznetsov, “Conjunctive grammars in Greibach normal form and the Lambek calculus with additive connectives”, Proc. Formal Grammar 2012 and Formal Grammar 2013, LNCS vol. 8036, Springer, 2013. pp. 242–249.
  21. S. L. Kuznetsov, “On translating Lambek grammars with one division into context-free grammars”, Proc. Steklov Inst. Math., 294, 2016, 129–138.
  22. S. Kuznetsov, “Complexity of the infinitary Lambek calculus with Kleene star”, Rev. Symb. Logic, 14:4, 2021, 946–972.
  23. J. Lambek, “The mathematics of sentence structure”, American Math. Monthly, 65:3 (1958), 154–170.
  24. M. Latta, R. Wall, “Intersective context-free languages”, Lenguajes Naturales y Lenguajes Formales IX, Barcelona, 1993, 15–43.
  25. M. Moortgat. “Multimodal linguistic inference”, Journal of Logic, Language, and Information 5:3–4, 1996, 349–385.
  26. A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages and Combinatorics, 6:4 (2001), 519–535.
  27. A. Okhotin, “Boolean grammars”, Information and Computation, 194:1 (2004), 19–48.
  28. A. Okhotin, “A simple P-complete problem and its language-theoretic representations”, Theoretical Computer Science, 412:1–2 (2011), 68–82.
  29. A. Okhotin, “Conjunctive and Boolean grammars: the true general case of the context-free grammars”, Computer Science Review, 9 (2013), 27–59.
  30. A. Okhotin. “Parsing by matrix multiplication generalized to Boolean grammars”, Theoretical Computer Science, 516 (2014), 101–120.
  31. A. Okhotin. “A tale of conjunctive grammars”, Developments in Language Theory (DLT 2018, Tokyo, Japan, 10–14 September 2018), LNCS 11088, 36–59.
  32. A. Okhotin, C. Reitwießner, “Conjunctive grammars with restricted disjunction”, Theoretical Computer Science, 411:26–28 (2010), 2559–2571.
  33. H. Ono, Y. Komori, “Logics without contraction rule”, J. Symb. Logic, 50:1, 1985, 169–201.
  34. M. Pentus. “Lambek grammars are context-free”, Proc. 8th Annual IEEE Symposium on Logic in Computer Science, 1993. pp. 429–433.
  35. M. Pentus. “Free monoid completeness of the Lambek calculus allowing empty premises”, Proc. Logic Colloquium ’96, Lect. Notes Logic vol. 12, Springer, 1998, pp. 171–209.
  36. M. Pentus, “Lambek calculus is NP-complete”, Theor. Comput. Sci., 357:1–3, 2006, 186–201.
  37. A. N. Safiullin, “Derivability of admissible rules with simple premises in the Lambek calculus”, Moscow Univ. Math. Bull., 62:4, 2007, 168–171.
  38. Yu. V. Savateev. “Recognition of derivability for the Lambek calculus with one division”, Moscow Univ. Math. Bull., 64:2, 2009, 73–75.
  39. H. Schellinx. “Some syntactical observations on linear logic”, J. Logic Comput., 1:4, 1991, 537–559.
  40. M. Steedman. Surface structure and interpretation. MIT Press, 1996.
  41. H. Seki, T. Matsumura, M. Fujii, T. Kasami, “On multiple context-free grammars”, Theoretical Computer Science, 88:2 (1991), 191–229.
  42. K. Vijay-Shanker, D. J. Weir, A. K. Joshi, “Characterizing structural descriptions produced by various grammatical formalisms”, 25th Annual Meeting of the Association for Computational Linguistics (ACL 1987), 104–111.
  43. D. N. Yetter. “Quantales and (noncommutative) linear logic”, Journal of Symbolic Logic, 55:1, 1990. pp. 41–64.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com