Multiple imputation of missing covariates when using the Fine-Gray model (2405.16602v1)
Abstract: The Fine-Gray model for the subdistribution hazard is commonly used for estimating associations between covariates and competing risks outcomes. When there are missing values in the covariates included in a given model, researchers may wish to multiply impute them. Assuming interest lies in estimating the risk of only one of the competing events, this paper develops a substantive-model-compatible multiple imputation approach that exploits the parallels between the Fine-Gray model and the standard (single-event) Cox model. In the presence of right-censoring, this involves first imputing the potential censoring times for those failing from competing events, and thereafter imputing the missing covariates by leveraging methodology previously developed for the Cox model in the setting without competing risks. In a simulation study, we compared the proposed approach to alternative methods, such as imputing compatibly with cause-specific Cox models. The proposed method performed well (in terms of estimation of both subdistribution log hazard ratios and cumulative incidences) when data were generated assuming proportional subdistribution hazards, and performed satisfactorily when this assumption was not satisfied. The gain in efficiency compared to a complete-case analysis was demonstrated in both the simulation study and in an applied data example on competing outcomes following an allogeneic stem cell transplantation. For individual-specific cumulative incidence estimation, assuming proportionality on the correct scale at the analysis phase appears to be more important than correctly specifying the imputation procedure used to impute the missing covariates.
- Carpenter JR, Smuk M. Missing Data: A Statistical Framework for Practice. Biom J. 2021;63(5):915–947. doi: 10.1002/bimj.202000196
- doi: 10.1136/bmj.b2393
- van Buuren S, Groothuis-Oudshoorn K. Mice: Multivariate Imputation by Chained Equations in R. J Stat Softw. 2011;45(3):1–67. doi: 10.18637/jss.v045.i03
- doi: 10.2307/2530374
- doi: 10.1177/09622802221102623
- White IR, Royston P. Imputing Missing Covariate Values for the Cox Model. Stat Med. 2009;28(15):1982–1998. doi: 10.1002/sim.3618
- doi: 10.1177/0962280214521348
- Bartlett JW, Taylor JMG. Missing Covariates in Competing Risks Analysis. Biostatistics. 2016;17(4):751–763. doi: 10.1093/biostatistics/kxw019
- Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a Competing Risk. J Am Stat Assoc. 1999;94(446):496–509. doi: 10.1080/01621459.1999.10474144
- Lau B, Lesko C. Missingness in the Setting of Competing Risks: From Missing Values to Missing Potential Outcomes. Curr Epidemiol Rep. 2018;5(2):153–159. doi: 10.1007/s40471-018-0142-3
- doi: 10.1136/bmj-2022-070918
- doi: 10.1136/bmj.m3731
- Ruan PK, Gray RJ. Analyses of Cumulative Incidence Functions via Non-Parametric Multiple Imputation. Stat Med. 2008;27(27):5709–5724. doi: 10.1002/sim.3402
- Use R!New York: Springer-Verlag, 2012
- doi: 10.1002/bimj.201800274
- Gray RJ. A Class of K-Sample Tests for Comparing the Cumulative Incidence of a Competing Risk. Ann Stat. 1988;16(3):1141–1154.
- doi: 10.1002/sim.9023
- Rubin D. Multiple Imputation for Nonresponse in Surveys. New York: John Wiley & Sons, 1987
- CRC Press, 2014.
- Allignol A, Beyersmann J. Software for Fitting Nonstandard Proportional Subdistribution Hazards Models. Biostatistics. 2010;11(4):674–675. doi: 10.1093/biostatistics/kxq018
- doi: 10.1002/sim.7208
- doi: 10.1002/sim.8086
- Klein J, Moeschberger M. Survival Analysis: Techniques for Censored and Truncated Data (2nd Edition). New York: Springer-Verlag, 2003.
- doi: 10.1002/sim.3516
- doi: 10.1002/sim.3786
- van Buuren S. Flexible Imputation of Missing Data. Second Edition. Boca Raton, FL: Chapman & Hall/CRC Press, 2018.
- doi: 10.1186/s12874-015-0048-4
- doi: 10.1186/1471-2288-9-57
- doi: 10.1002/bimj.201400004
- doi: 10.1002/bimj.201800289
- R Core Team . R: A Language and Environment for Statistical Computing. Vienna, Austria: 2023.
- Therneau TM. A Package for Survival Analysis in R. 2023.
- Gasparini A. Rsimsum: Summarise Results from Monte Carlo Simulation Studies. J Open Source Softw. 2018;3(26):739. doi: 10.21105/joss.00739
- doi: 10.1002/ajh.27262
- doi: 10.1016/S2352-3026(23)00305-8
- von Hippel PT. How Many Imputations Do You Need? A Two-stage Calculation Using a Quadratic Rule. Sociol Methods Res. 2020;49(3):699–718. doi: 10.1177/0049124117747303
- doi: 10.32614/RJ-2017-062
- doi: 10.1038/s41598-022-07828-7
- doi: 10.1080/17453674.2018.1427314
- Keogh RH, Morris TP. Multiple Imputation in Cox Regression When There Are Time-Varying Effects of Covariates. Stat Med. 2018;37(25):3661–3678. doi: 10.1002/sim.7842
- Delord M, Génin E. Multiple Imputation for Competing Risks Regression with Interval-Censored Data. J Stat Comput Simul. 2016;86(11):2217–2228. doi: 10.1080/00949655.2015.1106543
- Geskus RB. Cause-Specific Cumulative Incidence Estimation and the Fine and Gray Model Under Both Left Truncation and Right Censoring. Biometrics. 2011;67(1):39–49. doi: 10.1111/j.1541-0420.2010.01420.x
- Mao L, Lin DY. Efficient Estimation of Semiparametric Transformation Models for the Cumulative Incidence of Competing Risks. J R Stat Soc Series B Stat Methodol. 2017;79(2):573–587. doi: 10.1111/rssb.12177
- doi: 10.1016/j.jclinepi.2012.09.017