Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Differential Equation Approach for Wasserstein GANs and Beyond (2405.16351v1)

Published 25 May 2024 in stat.ML and cs.LG

Abstract: We propose a new theoretical lens to view Wasserstein generative adversarial networks (WGANs). In our framework, we define a discretization inspired by a distribution-dependent ordinary differential equation (ODE). We show that such a discretization is convergent and propose a viable class of adversarial training methods to implement this discretization, which we call W1 Forward Euler (W1-FE). In particular, the ODE framework allows us to implement persistent training, a novel training technique that cannot be applied to typical WGAN algorithms without the ODE interpretation. Remarkably, when we do not implement persistent training, we prove that our algorithms simplify to existing WGAN algorithms; when we increase the level of persistent training appropriately, our algorithms outperform existing WGAN algorithms in both low- and high-dimensional examples.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (16)
  1. L. Ambrosio. Lecture notes on optimal transport problems, 2000. URL http://cvgmt.sns.it/paper/1008/. cvgmt preprint.
  2. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008. ISBN 978-3-7643-8721-1.
  3. Wasserstein generative adversarial networks. In D. Precup and Y. W. Teh, editors, Proceedings of the 34th International Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pages 214–223. PMLR, 06–11 Aug 2017. URL https://proceedings.mlr.press/v70/arjovsky17a.html.
  4. L. Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.
  5. Faster SGD training by minibatch persistency. CoRR, abs/1806.07353, 2018. URL http://arxiv.org/abs/1806.07353.
  6. Generative adversarial networks, 2014.
  7. Improved training of wasserstein gans. Advances in Neural Information Processing Systems, 30, 2017.
  8. Y. J. Huang and Y. Zhang. Gans as gradient flows that converge. Journal of Machine Learning Research, 24(217):1–40, 2023. URL http://jmlr.org/papers/v24/22-0583.html.
  9. J. J. Hull. A database for handwritten text recognition research. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994. doi: 10.1109/34.291440.
  10. B. Jourdain and A. Tse. Central limit theorem over non-linear functionals of empirical measures with applications to the mean-field fluctuation of interacting diffusions. Electron. J. Probab., 26:Paper No. 154, 34, 2021. ISSN 1083-6489. doi: 10.1214/21-ejp720. URL https://doi.org/10.1214/21-ejp720.
  11. Adversarial computation of optimal transport maps. CoRR, abs/1906.09691, 2019. URL http://arxiv.org/abs/1906.09691.
  12. Unrolled generative adversarial networks, 2017.
  13. On the regularization of wasserstein GANs. In International Conference on Learning Representations, 2018. URL https://openreview.net/forum?id=B1hYRMbCW.
  14. F. Santambrogio. Optimal transport for applied mathematicians, volume 87 of Progress in Nonlinear Differential Equations and their Applications. Birkhäuser/Springer, Cham, 2015. ISBN 978-3-319-20827-5; 978-3-319-20828-2. doi: 10.1007/978-3-319-20828-2. URL https://doi.org/10.1007/978-3-319-20828-2. Calculus of variations, PDEs, and modeling.
  15. Large-scale optimal transport and mapping estimation, 2017. URL https://arxiv.org/abs/1711.02283.
  16. C. Villani. Optimal transport, volume 338 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2009. ISBN 978-3-540-71049-3. doi: 10.1007/978-3-540-71050-9. URL https://doi.org/10.1007/978-3-540-71050-9. Old and new.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com