Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Comparative Analysis of Open-Source Language Models in Summarizing Medical Text Data (2405.16295v3)

Published 25 May 2024 in cs.CL and cs.LG

Abstract: Unstructured text in medical notes and dialogues contains rich information. Recent advancements in LLMs have demonstrated superior performance in question answering and summarization tasks on unstructured text data, outperforming traditional text analysis approaches. However, there is a lack of scientific studies in the literature that methodically evaluate and report on the performance of different LLMs, specifically for domain-specific data such as medical chart notes. We propose an evaluation approach to analyze the performance of open-source LLMs such as Llama2 and Mistral for medical summarization tasks, using GPT-4 as an assessor. Our innovative approach to quantitative evaluation of LLMs can enable quality control, support the selection of effective LLMs for specific tasks, and advance knowledge discovery in digital health.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (18)
  1. P. Wang, L. Li, L. Chen, D. Zhu, B. Lin, Y. Cao, Q. Liu, T. Liu, and Z. Sui, “Large language models are not fair evaluators,” arXiv preprint arXiv:2305.17926, 2023.
  2. C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” in Text Summarization Branches Out.   Barcelona, Spain: Association for Computational Linguistics, Jul. 2004, pp. 74–81.
  3. T. Zhang, V. Kishore, F. Wu, K. Q. Weinberger, and Y. Artzi, “Bertscore: Evaluating text generation with bert,” in International Conference on Learning Representations, 2019.
  4. L. Zheng, W.-L. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D. Li, E. Xing, H. Zhang, J. E. Gonzalez, and I. Stoica, “Judging LLM-as-a-judge with MT-bench and chatbot arena,” in Thirty-seventh Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2023.
  5. OpenAI, “Gpt-4 technical report,” 2023. [Online]. Available: https://api.semanticscholar.org/CorpusID:257532815
  6. H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288, 2023.
  7. A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al., “Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.
  8. A. Ben Abacha, Y. Mrabet, Y. Zhang, C. Shivade, C. Langlotz, and D. Demner-Fushman, “Overview of the MEDIQA 2021 shared task on summarization in the medical domain,” in Proceedings of the 20th Workshop on Biomedical Language Processing.   Online: Association for Computational Linguistics, Jun. 2021, pp. 74–85.
  9. A. Ben Abacha and D. Demner-Fushman, “On the summarization of consumer health questions,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, A. Korhonen, D. Traum, and L. Màrquez, Eds.   Florence, Italy: Association for Computational Linguistics, Jul. 2019, pp. 2228–2234.
  10. M. Savery, A. B. Abacha, S. Gayen, and D. Demner-Fushman, “Question-driven summarization of answers to consumer health questions,” Scientific Data, vol. 7, no. 1, p. 322, 2020.
  11. G. Zeng, W. Yang, Z. Ju, Y. Yang, S. Wang, R. Zhang, M. Zhou, J. Zeng, X. Dong, R. Zhang, H. Fang, P. Zhu, S. Chen, and P. Xie, “MedDialog: Large-scale medical dialogue datasets,” in Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), B. Webber, T. Cohn, Y. He, and Y. Liu, Eds.   Online: Association for Computational Linguistics, Nov. 2020, pp. 9241–9250.
  12. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  13. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners.”
  14. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
  15. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv e-prints, pp. arXiv–2302, 2023.
  16. E. Almazrouei, H. Alobeidli, A. Alshamsi, A. Cappelli, R. Cojocaru, M. Debbah, É. Goffinet, D. Hesslow, J. Launay, Q. Malartic et al., “The falcon series of open language models,” arXiv preprint arXiv:2311.16867, 2023.
  17. I. Jahan, M. T. R. Laskar, C. Peng, and J. Huang, “Evaluation of ChatGPT on biomedical tasks: A zero-shot comparison with fine-tuned generative transformers,” in The 22nd Workshop on Biomedical Natural Language Processing and BioNLP Shared Tasks.   Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 326–336.
  18. H. Yuan, Z. Yuan, R. Gan, J. Zhang, Y. Xie, and S. Yu, “BioBART: Pretraining and evaluation of a biomedical generative language model,” in Proceedings of the 21st Workshop on Biomedical Language Processing.   Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 97–109.
Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets