Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

5W1H Extraction With Large Language Models (2405.16150v1)

Published 25 May 2024 in cs.CL

Abstract: The extraction of essential news elements through the 5W1H framework (\textit{What}, \textit{When}, \textit{Where}, \textit{Why}, \textit{Who}, and \textit{How}) is critical for event extraction and text summarization. The advent of LLMs such as ChatGPT presents an opportunity to address language-related tasks through simple prompts without fine-tuning models with much time. While ChatGPT has encountered challenges in processing longer news texts and analyzing specific attributes in context, especially answering questions about \textit{What}, \textit{Why}, and \textit{How}. The effectiveness of extraction tasks is notably dependent on high-quality human-annotated datasets. However, the absence of such datasets for the 5W1H extraction increases the difficulty of fine-tuning strategies based on open-source LLMs. To address these limitations, first, we annotate a high-quality 5W1H dataset based on four typical news corpora (\textit{CNN/DailyMail}, \textit{XSum}, \textit{NYT}, \textit{RA-MDS}); second, we design several strategies from zero-shot/few-shot prompting to efficient fine-tuning to conduct 5W1H aspects extraction from the original news documents. The experimental results demonstrate that the performance of the fine-tuned models on our labelled dataset is superior to the performance of ChatGPT. Furthermore, we also explore the domain adaptation capability by testing the source-domain (e.g. NYT) models on the target domain corpus (e.g. CNN/DailyMail) for the task of 5W1H extraction.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (32)
  1. F. Hamborg, N. Meuschke, and B. Gipp, “Bias-aware news analysis using matrix-based news aggregation,” International Journal on Digital Libraries, vol. 21, no. 2, pp. 129–147, 2020.
  2. F. Hamborg, C. Breitinger, and B. Gipp, “Giveme5w1h: A universal system for extracting main events from news articles,” arXiv preprint arXiv:1909.02766, 2019.
  3. F. Hamborg, N. Meuschke, and B. Gipp, “Matrix-based news aggregation: exploring different news perspectives,” in 2017 ACM/IEEE Joint Conference on Digital Libraries (JCDL).   IEEE, 2017, pp. 1–10.
  4. P. Li, L. Bing, W. Lam, H. Li, and Y. Liao, “Reader-aware multi-document summarization via sparse coding,” arXiv preprint arXiv:1504.07324, 2015.
  5. F. Hamborg, C. Breitinger, M. Schubotz, S. Lachnit, and B. Gipp, “Extraction of main event descriptors from news articles by answering the journalistic five w and one h questions,” in Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries, 2018, pp. 339–340.
  6. L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray et al., “Training language models to follow instructions with human feedback,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 730–27 744, 2022.
  7. D. Gao, H. Wang, Y. Li, X. Sun, Y. Qian, B. Ding, and J. Zhou, “Text-to-sql empowered by large language models: A benchmark evaluation,” arXiv preprint arXiv:2308.15363, 2023.
  8. Y. Chen, Y. Liu, F. Meng, Y. Chen, J. Xu, and J. Zhou, “Improving translation faithfulness of large language models via augmenting instructions,” arXiv preprint arXiv:2308.12674, 2023.
  9. J. Gao, H. Zhao, C. Yu, and R. Xu, “Exploring the feasibility of chatgpt for event extraction. arxiv,” arXiv preprint arXiv:2303.03836, 2023.
  10. S. Yang, D. Feng, L. Qiao, Z. Kan, and D. Li, “Exploring pre-trained language models for event extraction and generation,” in Proceedings of the 57th annual meeting of the association for computational linguistics, 2019, pp. 5284–5294.
  11. C. Lou, J. Gao, C. Yu, W. Wang, H. Zhao, W. Tu, and R. Xu, “Translation-based implicit annotation projection for zero-shot cross-lingual event argument extraction,” in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 2076–2081.
  12. P. Li, L. Bing, and W. Lam, “Reader-aware multi-document summarization: An enhanced model and the first dataset,” arXiv preprint arXiv:1708.01065, 2017.
  13. X. L. Li and P. Liang, “Prefix-tuning: Optimizing continuous prompts for generation,” arXiv preprint arXiv:2101.00190, 2021.
  14. E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.
  15. T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora: Efficient finetuning of quantized llms,” arXiv preprint arXiv:2305.14314, 2023.
  16. F. Hamborg, S. Lachnit, M. Schubotz, T. Hepp, and B. Gipp, “Giveme5w: main event retrieval from news articles by extraction of the five journalistic w questions,” in International conference on information.   Springer, 2018, pp. 356–366.
  17. A. Das, S. Bandyaopadhyay, and B. Gambäck, “The 5w structure for sentiment summarization-visualization-tracking,” in Computational Linguistics and Intelligent Text Processing: 13th International Conference, CICLing 2012, New Delhi, India, March 11-17, 2012, Proceedings, Part I 13.   Springer, 2012, pp. 540–555.
  18. K. Parton, K. McKeown, R. E. Coyne, M. T. Diab, R. Grishman, D. Hakkani-Tür, M. Harper, H. Ji, W. Y. Ma, A. Meyers et al., “Who, what, when, where, why? comparing multiple approaches to the cross-lingual 5w task,” 2009.
  19. S. Yaman, D. Hakkani-Tür, G. Tur, R. Grishman, M. Harper, K. R. McKeown, A. Meyers, and K. Sharma, “Classification-based strategies for combining multiple 5-w question answering systems,” in Tenth Annual Conference of the International Speech Communication Association.   Citeseer, 2009.
  20. S. Srivastava, G. Singh, S. Matsumoto, A. Raz, P. Costa, J. Poore, and Z. Yao, “Mailex: Email event and argument extraction,” arXiv preprint arXiv:2305.13469, 2023.
  21. B. Li, G. Fang, Y. Yang, Q. Wang, W. Ye, W. Zhao, and S. Zhang, “Evaluating chatgpt’s information extraction capabilities: An assessment of performance, explainability, calibration, and faithfulness,” arXiv preprint arXiv:2304.11633, 2023.
  22. J. Wei, M. Bosma, V. Y. Zhao, K. Guu, A. W. Yu, B. Lester, N. Du, A. M. Dai, and Q. V. Le, “Finetuned language models are zero-shot learners,” arXiv preprint arXiv:2109.01652, 2021.
  23. J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou et al., “Chain-of-thought prompting elicits reasoning in large language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 24 824–24 837, 2022.
  24. H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023.
  25. W.-L. Chiang, Z. Li, Z. Lin, Y. Sheng, Z. Wu, H. Zhang, L. Zheng, S. Zhuang, Y. Zhuang, J. E. Gonzalez et al., “Vicuna: An open-source chatbot impressing gpt-4 with 90%* chatgpt quality,” See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.
  26. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le, “Xlnet: Generalized autoregressive pretraining for language understanding,” Advances in neural information processing systems, vol. 32, 2019.
  27. G. Klein, F. Hernandez, V. Nguyen, and J. Senellart, “The opennmt neural machine translation toolkit: 2020 edition,” in Proceedings of the 14th Conference of the Association for Machine Translation in the Americas (Volume 1: Research Track), 2020, pp. 102–109.
  28. R. Nallapati, B. Zhou, C. Gulcehre, B. Xiang et al., “Abstractive text summarization using sequence-to-sequence rnns and beyond,” arXiv preprint arXiv:1602.06023, 2016.
  29. S. Narayan, S. B. Cohen, and M. Lapata, “Don’t give me the details, just the summary! topic-aware convolutional neural networks for extreme summarization,” arXiv preprint arXiv:1808.08745, 2018.
  30. E. Sandhaus, “The new york times annotated corpus,” Linguistic Data Consortium, Philadelphia, vol. 6, no. 12, p. e26752, 2008.
  31. C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Text summarization branches out, 2004, pp. 74–81.
  32. K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method for automatic evaluation of machine translation,” in Proceedings of the 40th annual meeting of the Association for Computational Linguistics, 2002, pp. 311–318.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Yang Cao (295 papers)
  2. Yangsong Lan (1 paper)
  3. Feiyan Zhai (1 paper)
  4. Piji Li (75 papers)
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets