Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Small unsatisfiable $k$-CNFs with bounded literal occurrence (2405.16149v3)

Published 25 May 2024 in cs.DM, cs.CC, and cs.LO

Abstract: We obtain the smallest unsatisfiable formulas in subclasses of $k$-CNF (exactly $k$ distinct literals per clause) with bounded variable or literal occurrences. Smaller unsatisfiable formulas of this type translate into stronger inapproximability results for MaxSAT in the considered formula class. Our results cover subclasses of 3-CNF and 4-CNF; in all subclasses of 3-CNF we considered we were able to determine the smallest size of an unsatisfiable formula; in the case of 4-CNF with at most 5 occurrences per variable we decreased the size of the smallest known unsatisfiable formula. Our methods combine theoretical arguments and symmetry-breaking exhaustive search based on SAT Modulo Symmetries (SMS), a recent framework for isomorph-free SAT-based graph generation. To this end, and as a standalone result of independent interest, we show how to encode formulas as graphs efficiently for SMS.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (28)
  1. Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. J. Combin. Theory Ser. A, 43:196–204, 1986. doi:10.1016/0097-3165(86)90060-9.
  2. Cardinality networks and their applications. In Oliver Kullmann, editor, Theory and Applications of Satisfiability Testing - SAT 2009, 12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume 5584 of Lecture Notes in Computer Science, pages 167–180. Springer, 2009. doi:10.1007/978-3-642-02777-2_18.
  3. Approximation hardness and satisfiability of bounded occurrence instances of SAT. Technical Report TR03-022, Electronic Colloquium on Computational Complexity (ECCC), 2003. URL: https://eccc.weizmann.ac.il/report/2003/022/.
  4. Approximation hardness of short symmetric instances of max-3sat. Technical Report TR03–049, Electronic Colloquium on Computational Complexity (ECCC), 2003. URL: https://eccc.weizmann.ac.il/report/2003/049/.
  5. On simplified np-complete variants of monotone3-sat. Discret. Appl. Math., 292:45–58, 2021. doi:10.1016/J.DAM.2020.12.010.
  6. M. Davis and H. Putnam. A computing procedure for quantification theory. J. of the ACM, 7(3):201–215, 1960. doi:10.1145/321033.321034.
  7. Olivier Dubois. On the r,s𝑟𝑠r,sitalic_r , italic_s-SAT satisfiability problem and a conjecture of Tovey. Discr. Appl. Math., 26(1):51–60, 1990. doi:10.1016/0166-218X(90)90020-D.
  8. The silent (r)evolution of SAT. Communications of the ACM, 66(6):64–72, June 2023. doi:10.1145/3560469.
  9. Heidi Gebauer. Disproof of the neighborhood conjecture with implications to SAT. Combinatorica, 32(5):573–587, 2012. doi:10.1007/S00493-012-2679-Y.
  10. The local lemma is asymptotically tight for SAT. J. of the ACM, 63(5):Art. 43, 32, 2016. doi:10.1145/2975386.
  11. Computing unsatisfiable k𝑘kitalic_k-SAT instances with few occurrences per variable. Theoretical Computer Science, 337(1-3):347–359, 2005. doi:10.1016/j.tcs.2005.02.004.
  12. A note on of unsatisfiable k𝑘kitalic_k-CNF formulas with few occurrences per variable. SIAM J. Discrete Math., 20(2):523–528, 2006. doi:10.1137/S0895480104445745.
  13. Blocked clause elimination. In Javier Esparza and Rupak Majumdar, editors, Tools and Algorithms for the Construction and Analysis of Systems, 16th International Conference, TACAS 2010, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, volume 6015 of Lecture Notes in Computer Science, pages 129–144. Springer, 2010. doi:10.1007/978-3-642-12002-2_10.
  14. Non-cnf QBF solving with QCIR. In Adnan Darwiche, editor, Beyond NP, Papers from the 2016 AAAI Workshop., volume WS-16-05 of AAAI Workshops. AAAI Press, 2016. URL: https://aaai.org/papers/aaaiw-ws0186-16-12601/.
  15. David Jurenka. Upper bounds for (k,s)𝑘𝑠(k,s)( italic_k , italic_s )-SAT. Bachelor’s Thesis, Charles University in Prague, Faculty of Mathematics and Physics, 2011. http://hdl.handle.net/20.500.11956/50583.
  16. Co-certificate learning with SAT modulo symmetries. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, China, pages 1944–1953. ijcai.org, 2023. Main Track. URL: https://doi.org/10.24963/ijcai.2023/216, doi:10.24963/IJCAI.2023/216.
  17. SAT modulo symmetries for graph generation. In 27th International Conference on Principles and Practice of Constraint Programming (CP 2021), LIPIcs, page 39:1–39:17. Dagstuhl, 2021. doi:10.4230/LIPIcs.CP.2021.34.
  18. SAT modulo symmetries for graph generation and enumeration. ACM Transactions on Computational Logic, 2024. Full and extended version of [17], to appear.
  19. Propositional logic: deduction and algorithms. Cambridge University Press, Cambridge, 1999.
  20. Donald E. Knuth. The art of computer programming. Vol. 4B. Combinatorial algorithms. Part 2. Addison-Wesley, Upper Saddle River, NJ, 2023.
  21. One more occurrence of variables make satisfiability jump from trivial to NP-complete. SIAM J. Comput., 30:397–403, 1993. doi:10.1137/0222015.
  22. O. Kullmann. On a generalization of extended resolution. Discrete Appl. Math., 96–97(1):149–176, oct 1999. doi:10.1016/S0166-218X(99)00037-2.
  23. Conflict-driven clause learning SAT solvers. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors, Handbook of Satisfiability, pages 131–153. IOS Press, 2009.
  24. All instances of monotone 3-sat-(3,1) are satisfiable, 2023. arXiv:2311.06563.
  25. P. Savický and Jiří Sgall. DNF tautologies with a limited number of occurrences of every variable. Theoretical Computer Science, 238(1-2):495–498, 2000. doi:10.1016/S0304-3975(00)00036-0.
  26. J. Stříbrná. Between combinatorics and formal logic. Master’s thesis, Charles University, Prague, 1994.
  27. Craig A. Tovey. A simplified NP-complete satisfiability problem. Discr. Appl. Math., 8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.
  28. Supplementary material for paper ’Small unsatisfiable k-CNFs with bounded literal occurrence’, May 2024. doi:10.5281/zenodo.11282310.
Citations (1)

Summary

We haven't generated a summary for this paper yet.