Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A blow-up result for the semilinear Euler-Poisson-Darboux-Tricomi equation with critical power nonlinearity (2405.16145v1)

Published 25 May 2024 in math.AP

Abstract: In this paper, we prove a blow-up result for a generalized semilinear Euler-Poisson-Darboux equation with polynomially growing speed of propagation, when the power of the semilinear term is a shift of the Strauss' exponent for the classical semilinear wave equation. Our proof is based on a comparison argument of Kato-type for a second-order ODE with time-dependent coefficients, an integral representation formula by Yagdjian and the Radon transform. As byproduct of our method, we derive upper bound estimates for the lifespan which coincide with the sharp one for the classical semilinear wave equation in the critical case.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (63)
  1. Fujita modified exponent for scale invariant damped semilinear wave equations. J. Evol. Equ. 21: 2735–2748 (2021).
  2. Copson E.T., On a regular Cauchy problem for the Euler-Poisson-Darboux equation. Proc. R. Soc. A, 235, 1203: 560–572 (1956).
  3. D’Abbicco M., The threshold of effective damping for semilinear wave equations. Math. Methods Appl. Sci. 38(6):1032–1045 (2015).
  4. D’Abbicco M., Small data solutions for the Euler-Poisson-Darboux equation with a power nonlinearity. J. Differential Equations 286(10):531–556 (2021).
  5. D’Abbicco M., Lucente S., A modified test function method for damped wave equations. Adv. Nonlinear Stud. 13(4):867–892 (2013).
  6. NLWE with a special scale invariant damping in odd space dimension. Discrete Contin. Dyn. Syst. Dynamical systems, differential equations and applications. 10th AIMS Conference. Suppl., 312–319, doi: 10.3934/proc.2015.0312.
  7. A shift in the Strauss exponent for semilinear wave equations with a not effective damping. J. Differential Equations 259(10): 5040–5073 (2015).
  8. D’Abbicco M., Palmieri A., A note on Lp−Lqsuperscript𝐿𝑝superscript𝐿𝑞L^{p}-L^{q}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT - italic_L start_POSTSUPERSCRIPT italic_q end_POSTSUPERSCRIPT estimates for semilinear critical dissipative Klein–Gordon equations. J. Dyn. Differ. Equ. 33: 63–74 (2021). https://doi.org/10.1007/s10884-019-09818-2
  9. Darboux G., Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitésimal, Gauthier-Villars et fils, Paris, 1896.
  10. Delache S., Leray J., Calcul de la solution élémentaire de l’opérateur d’Euler-Poisson-Darboux et de l’opérateur de Tricomi-Clairaut, hyperbolique, d’ordre 2. Bulletin de la S. M. F. 99: 313–336 (1971).
  11. Diaz J.B., Weinberger H.F., A solution of the singular initial value problem for the Euler–Poisson–Darboux equation. Proc. Amer. Math. Soc. 4: 703–715 (1953).
  12. Euler L., Institutiones calculi integralis, Vol. III, Petropoli. 1770. Also in: Leonhardi Euleri Opera Omnia, Series History of Mathematical Sciences, Birkhäuser Basel, 1989.
  13. Fujita H., On the blowing up of solutions of the Cauchy problem for ut=Δ⁢u+u1+αsubscript𝑢𝑡Δ𝑢superscript𝑢1𝛼u_{t}=\Delta u+u^{1+\alpha}italic_u start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_Δ italic_u + italic_u start_POSTSUPERSCRIPT 1 + italic_α end_POSTSUPERSCRIPT. J. Fac. Sci. Univ. Tokyo 13: 109–124 (1966).
  14. Weighted Strichartz estimates and global existence for semi-linear wave equations, Amer. J. Math. 119(6): 1291–1319 (1997).
  15. Girardi G., Lucente S., Lifespan estimates for a special quasilinear time-dependent damped wave equation. In Cerejeiras P., Reissig M., Sabadini I., Toft J. eds Current Trends in Analysis, its Applications and Computation. Trends in Mathematics (2022). https://doi.org/10.1007/978-3-030-87502-2__\__61
  16. Glassey R.T., Finite-time blow-up for solutions of nonlinear wave equations, Math Z. 177(3): 323–340 (1981).
  17. Glassey R.T., Existence in the large for □⁢u=F⁢(u)□𝑢𝐹𝑢\square u=F(u)□ italic_u = italic_F ( italic_u ) in two space dimensions, Math Z. 178(2): 233–261 (1981).
  18. A note on the nonexistence of global solutions to the semilinear wave equation with nonlinearity of derivative-type in the generalized Einstein–de Sitter spacetime. Commun. Pure Appl. Anal. 20(11): 3703–3721 (2021). doi: 10.3934/cpaa.2021127
  19. On the global solution problem for semilinear generalized Tricomi equations, I. Calc. Var. 56, 21 (2017).
  20. On the global solution problem of semilinear generalized Tricomi equations, II. Pac. J. Math. 314(1): 29–80 (2021).
  21. On semilinear Tricomi equations with critical exponents or in two space dimensions. J. Differential Equations 263(12): 8102–8137 (2017).
  22. On the Strauss index of semilinear Tricomi equation. Commun. Pure Appl. Anal. 19(10): 4817–4838 (2020). doi: 10.3934/cpaa.2020213
  23. Helgason S., Integral Geometry and Radon Transforms Springer , New York, 2011.
  24. Ikeda M., Sobajima M., Life-span of solutions to semilinear wave equation with time-dependent critical damping for specially localized initial data. Math. Ann. 372(3/4):1017–1040 (2018).
  25. John F., Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28(1-3): 235–268 (1979).
  26. Kato T., Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure Appl. Math. 33(4) 501–505 (1980).
  27. Lai N.A., Weighted L2−L2superscript𝐿2superscript𝐿2L^{2}-L^{2}italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_L start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT estimate for wave equation in 𝐑3superscript𝐑3\mathbf{R}^{3}bold_R start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT and its applications, The role of metrics in the theory of partial differential equations, Adv. Stud. Pure Math. 85, (2020): 269–279. DOI: 10.2969/aspm/08510269
  28. Heat-like and wave-like lifespan estimates for solutions of semilinear damped wave equations via a Kato’s type lemma. J. Differential Equations 269(12): 11575–11620 (2020).
  29. Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent. J. Differential Equations 263(9): 5377–5394 (2017).
  30. Lai N.A., Zhou Y., Global existence for semilinear wave equations with scaling invariant damping in 3-D, Nonlinear Anal. 210, 112392 (2021). https://doi.org/10.1016/j.na.2021.112392
  31. Lindblad H., Sogge C., Long-time existence for small amplitude semilinear wave equations. Amer. J. Math. 118(5): 1047–1135 (1996).
  32. Lucente S., Critical exponents and where to find them. Bruno Pini Mathematical Analysis Seminar 9(1):102–114 (2018).
  33. A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Proc. Steklov Inst. Math. 234:1-362.
  34. Semi-linear wave models with power non-linearity and scale-invariant time-dependent mass and dissipation. Math. Nachr. 290(11/12): 1779–1805 (2017).
  35. NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010).
  36. Palmieri A., Global existence results for a semilinear wave equation with scale-invariant damping and mass in odd space dimension. In D’Abbicco M., Ebert M.R, Georgiev V., Ozawa T. eds. New Tools for Nonlinear PDEs and Application, Trends in Mathematics. (2019). https://doi.org/10.1007/978-3-030-10937-0__\__12
  37. Palmieri A., A global existence result for a semilinear wave equation with scale-invariant damping and mass in even space dimension. Math. Methods Appl. Sci. 42(8), 2680–2706 (2019). https://doi.org/10.1002/mma.5542.
  38. Palmieri A., Integral representation formulae for the solution of a wave equation with time-dependent damping and mass in the scale-invariant case, Math. Methods Appl. Sci. 44(17): 13008–13039 (2021). https://doi.org/10.1002/mma.7603.
  39. Palmieri A., Blow-up results for semilinear damped wave equations in Einstein-de Sitter spacetime. Z. Angew. Math. Phys. 72, 64 (2021). https://doi.org/10.1007/s00033-021-01494-x
  40. Palmieri A., On the critical exponent for the semilinear Euler-Poisson-Darboux-Tricomi equation with power nonlinearity. Preprint, arXiv:2105.09879v2, (2024)
  41. Palmieri A., Reissig M., A competition between Fujita and Strauss type exponents for blow-up of semi-linear wave equations with scale-invariant damping and mass. J. Differential Equations 266(2/3): 1176–1220 (2019). https://doi.org/10.1016/j.jde.2018.07.061.
  42. Palmieri A., Takamura H., On a semilinear wave equation in anti-de Sitter spacetime: The critical case J. Math. Phys. 63, 111505 (2022). https://doi.org/10.1063/5.0086614
  43. Palmieri A., Tu Z., Lifespan of semilinear wave equation with scale invariant dissipation and mass and sub-Strauss power nonlinearity. J. Math. Anal. Appl. 470(1): 447–469 (2019). https://doi: 10.1016/j.jmaa.2018.10.015.
  44. Poisson S.D., Mémoire sur l’intégration des équations linéaires aux differences partielles. J. de L’École Polytechechnique, Ser. 1., 19: 215–248 (1823).
  45. Schaeffer J., The equation ut⁢t−Δ⁢u=|u|psubscript𝑢𝑡𝑡Δ𝑢superscript𝑢𝑝u_{tt}-\Delta u=|u|^{p}italic_u start_POSTSUBSCRIPT italic_t italic_t end_POSTSUBSCRIPT - roman_Δ italic_u = | italic_u | start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT for the critical value of p𝑝pitalic_p, Proc. Roy. Soc. Edinburgh Sect. A. 101(1-2): 31–44 (1985).
  46. Sideris T.C., Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differential Equations 52(3): 378–406 (1984).
  47. Strauss W.A., Nonlinear scattering theory at low energy. J. Funct. Anal. 41(1): 110–133 (1981).
  48. Sun Y., Sharp lifespan estimates for subcritical generalized semilinear Tricomi equations. Math. Meth. Appl. Sci. 44(13): 10239–10251 (2021).
  49. Takamura H., Improved Kato’s lemma on ordinary differential inequality and its application to semilinear wave equations, Nonlinear Anal. 125: 227–240 (2015).
  50. Takamura H., Wakasa K., The sharp upper bound of the lifespan of solutions to critical semilinear wave equations in high dimensions, J. Differential Equations 251(4/5): 1157–1171 (2011).
  51. Tricomi F., Sulle equazioni lineari alle derivate parziali di 2∘superscript22^{\circ}2 start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT ordine, di tipo misto. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Ser. V 30(2): 495–498 (1921).
  52. Tu Z., Lin J., Lifespan of semilinear generalized Tricomi equation with Strauss type exponent. Preprint, arXiv:1903.11351v2 (2019).
  53. Wakasa K., Yordanov B., Blow-up of solutions to critical semilinear wave equations with variable coefficients, J. Differential Equations 266(9): 5360–5376 (2019).
  54. Wakasugi Y., Critical exponent for the semilinear wave equation with scale invariant damping. In: Ruzhansky, M., Turunen, V. eds. Fourier Analysis. Trends in Mathematics. Birkhäuser, Cham (2014), https://doi.org/10.1007/978-3-319-02550-6__\__19.
  55. Weinstein A., The singular solutions and the Cauchy problem for generalized Tricomi equations. Comm. Pure Appl. Math. 7: 105–116 (1954).
  56. Yagdjian K., A note on the fundamental solution for the Tricomi-type equation in the hyperbolic domain, J. Differential Equations 206(1): 227–252 (2004).
  57. Yagdjian K., Global Existence for the n-Dimensional Semilinear Tricomi-Type Equations. Comm. Partial Differential Equations 31(6): 907–944 (2006).
  58. Yagdjian K., The self-similar solutions of the Tricomi-type equations, Z. Angew. Math. Phys. 58(4): 612–645 (2007).
  59. Yagdjian K., Fundamental solutions for hyperbolic operators with variable coefficients, Rend. Istit. Mat. Univ. Trieste 42, suppl.: 221–243 (2010).
  60. Yagdjian K., Integral transform approach to generalized Tricomi equations. J. Differential Equations 259(11): 5927–5981 (2015).
  61. Yordanov B.T., Zhang Q.S., Finite time blow up for critical wave equations in high dimensions. J. Funct. Anal. 231(2): 361-374 (2006).
  62. Zhou Y., Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math. Ser. B 28(2): 205–212 (2007).
  63. Zhou Y., Han W., Life-span of solutions to critical semilinear wave equations. Commun. Partial. Differ. Equ. 39(3): 439–451 (2014).
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com